

GENERAL AND TECHNICAL INFORMATION
CONTENTS

Para.

1	Introduction
	Description
2	Fuel pump, air blower and motor unit
3	HP switch and solenoid valve assembly
4	Ignition switch
5	Ignition unit
6	Control unit
7	Starter motor
8	Operation
	Servicing
9	Introduction
10	Examine for damage and security
	Removal and installation
11	Safety disc(s)
13	Igniter plug(s)
15	Atomizer
17	Fuel and air pipes

Table	Page
1	Special tools, test equipment and materials
2	Torque loadings

Fig.	Page
1	Fuel pump, air blower and motor unit
2	HP switch and solenoid valve assembly
3	Ignition switch
4	Ignition unit
5	Control unit
6	Starter motor
7	Blocked nozzle plate hazard
8	Circuit diagram
9	IPN system diagram - scavenging
10	IPN system diagram - combustion
11	Sectional view of sheared safety disc
12	Removal/installation of igniter and safety disc
13	Orientati of the igniter plugs
14	Removal/installation of atomizer
15	Removal/installation of fuel and air pipes

LEADING PARTICULARS

Airframe group

Fuel pump, air blower and motor unit

Fuel pump	Gear type
Air blower	Roots type-triple lobed
Motor unit	25 V d.c. series wound
HP switch and solenoid valve	refer AP 113F-0106-1
Ignition switch	refer AP 113D-1502-16
Ignition unit	refer AP 113L-0118-1
Control unit	refer AP 113D-1007-16

Engine group

Starter motor	Turbine driven
Direction of rotation	Anti-clockwise - viewed on output shaft
Turbine	Single stage, impulse axial flow
Reduction gear	Single stage, epicyclic
Ratio	3.75 : 1
Nominal cut-out speed (output shaft)	10 200 rev/min
Lubrication	oil, OX-38
Capacity	100 cc
Fuel	AVPIN (NATO Code S-746, Ref. No. 34A/9135-99-9423147)
Consumption at 20 V d.c. motor terminal voltage	270 to 310 cm ³ /s
Safety discs (2 off)	37F/2995-99-4380562
Nett dry weight	60 lb (27.22 kg) approx

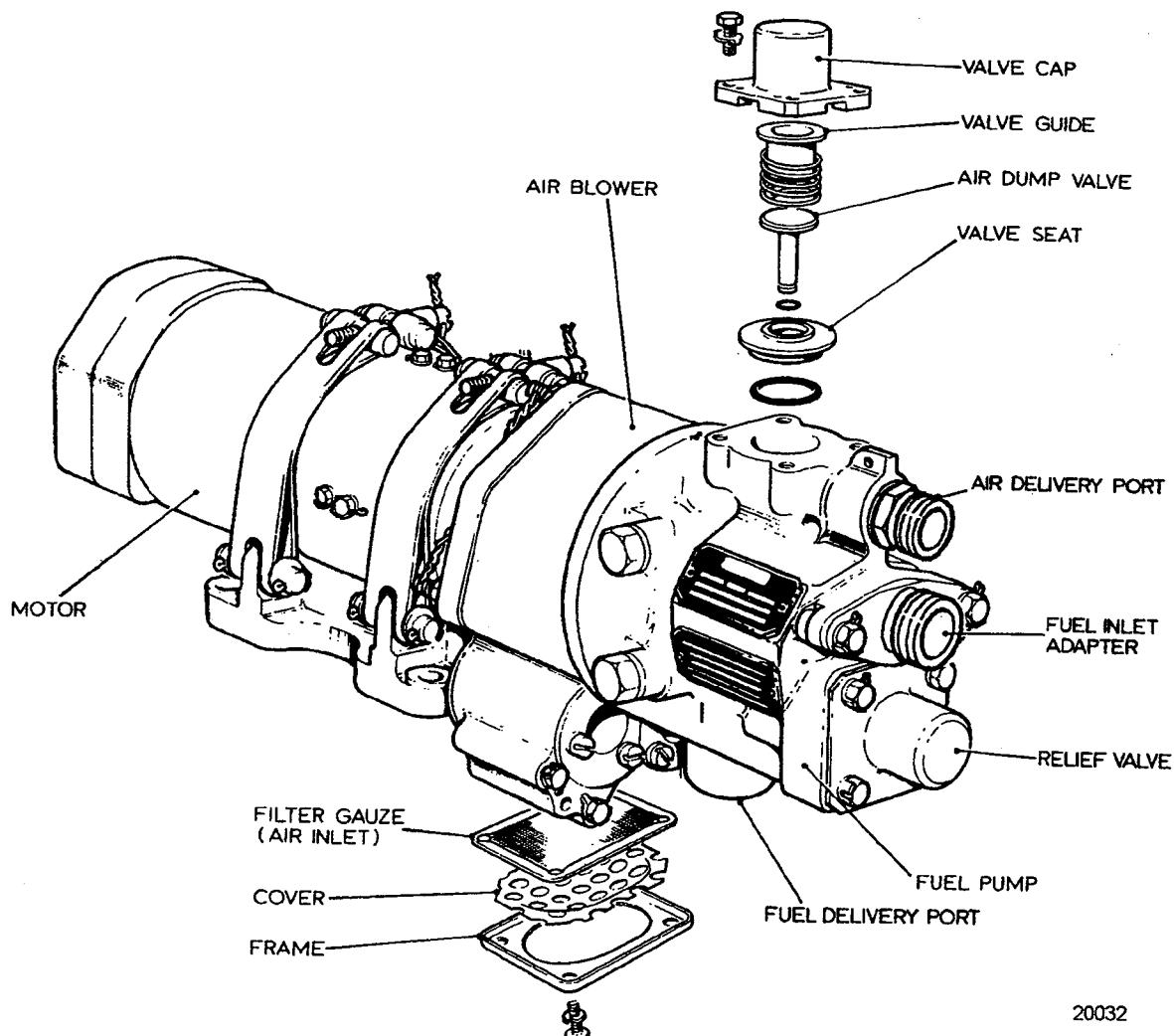
Introduction

1 The IPN (iso-propyl nitrate) starting system consists of an engine mounted, turbine rotor driven, starter motor and aircraft mounted fuel and electrical components.

1.1 The starter motor rotor is driven by the gas generated by the controlled ignition of IPN fuel (AVPIN) in the starter motor combustion chamber. The resultant drive is transmitted, via an epicyclic reduction gear, to the engine.

1.2 The system operating cycle, once initiated by the engine starter button, is fully automatic. A control unit containing a static timer, energised via a speed control switch in the starter motor gearbox, determines the sequence of operation and will shut down the system in the event of component failure or malfunction. The operating cycle is terminated, at a predetermined output shaft speed, by the speed control switch, or by a time switch in the control box.

1.3 The starter motor relies on the mono-fuel properties of the AVPIN fuel for its operation. This fuel contains sufficient oxygen to support combustion and will decompose under high pressure and temperature conditions, such as are created in the starter combustion chamber. At normal temperature and pressure the fuel burns readily when mixed with air.


1.4 The airframe mounted equipment controls the delivery of fuel to the starter motor combustion chamber and provides a supply of air, at the commencement of the operating cycle, for scavenging purposes. An ignition unit, energized via a fuel pressure operated ignition switch and connected to the starter motor igniters, provides initial combustion of the fuel.

1.5 Pressure fuel and air for the starter motor are provided by a combined fuel pump, air blower and motor unit. The pump, supplied with fuel from a special tank in the aircraft, delivers the fuel to the starter motor via a high pressure (HP) switch and solenoid valve assembly, and the ignition switch. Blower delivery air is piped direct to the starter motor.

DESCRIPTION

Fuel pump, air blower and motor unit (Fig 1)

2 A gear type fuel pump and a Roots type air blower are coupled together and driven by a 25 V d.c. series wound motor. The delivery side of the blower connects with a fuel pressure operated dump valve. A gauze filter at the blower inlet prevents ingress of foreign matter. The fuel pump, is self-lubricated with fuel at inlet pressure and a drain is provided to dispose of any seepage from the gland seal. A preset pressure relief valve is mounted on the outlet side of the pump. This valve is set during manufacture and must not be disturbed.

20032

Fig. 1 Fuel pump, air blower and motor unit

HP switch and solenoid valve assembly (Fig 2)

3 The HP switch and solenoid valve, bolted together to form an assembly, are interdependent in operation and are connected electrically with the control unit. The solenoid operated valve directs the pump delivery fuel either to the starter motor, via the ignition switch, or back to the supply tank, via a non-return valve housed in the solenoid valve outlet adapter. The HP switch provides a signal at high fuel pressures, to the speed control relay in the control unit and de-energizes the ignition unit.

Ignition switch (Fig 3)

4 The ignition switch senses the fuel pressure in the supply pipe to the combustion chamber and initiates the electrical supply to the ignition unit.

Ignition unit (Fig 4)

5 The high frequency (HF) ignition unit, energized via the ignition switch, provides a high energy supply for the two igniter plugs in the starter motor combustion chamber. The unit incorporates a vibrator and an auto frequency transformer and produces a high rate of sparking over a wide temperature range. A manually operated vent valve is fitted to the unit to facilitate restoration of atmospheric pressure within the unit in the event of ignition failure due to reduced internal pressure.

Control unit (Fig 5)

6 The control unit incorporates an open relay and a static timer, made up of three printed wiring boards and a sealed relay. The relays operate in conjunction with the HP, ignition and speed control relays to provide automatic control of the starting system.

Starter motor (Fig 6 and 7)

7 The starter motor, complete with air and fuel pipes, an exhaust outlet and attaching parts, forms the engine equipment for the starting system. An atomizer, combustion chamber, nozzle plate and a rotor driven, reduction gearbox are the main basic components of the starter. The gearbox incorporates the speed cutout switch, the output shaft and the starter mounting flange, complete with captive bolts. The output shaft is splined and threaded to receive the sun gear of the engine reduction gear.

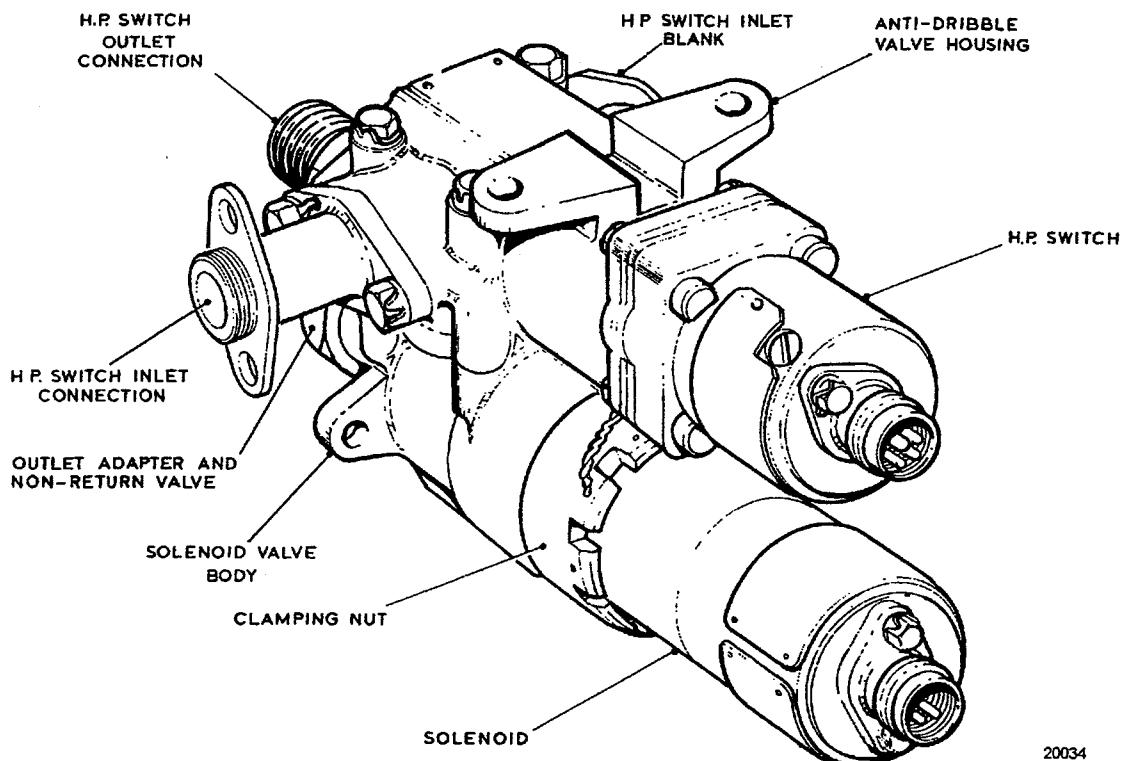


Fig. 2 HP switch and solenoid valve

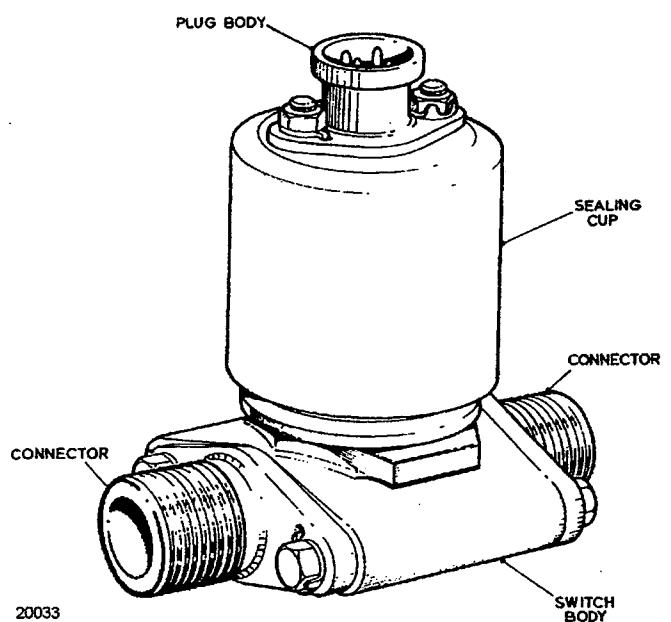


Fig. 3 Ignition switch

Fig. 4 Ignition unit

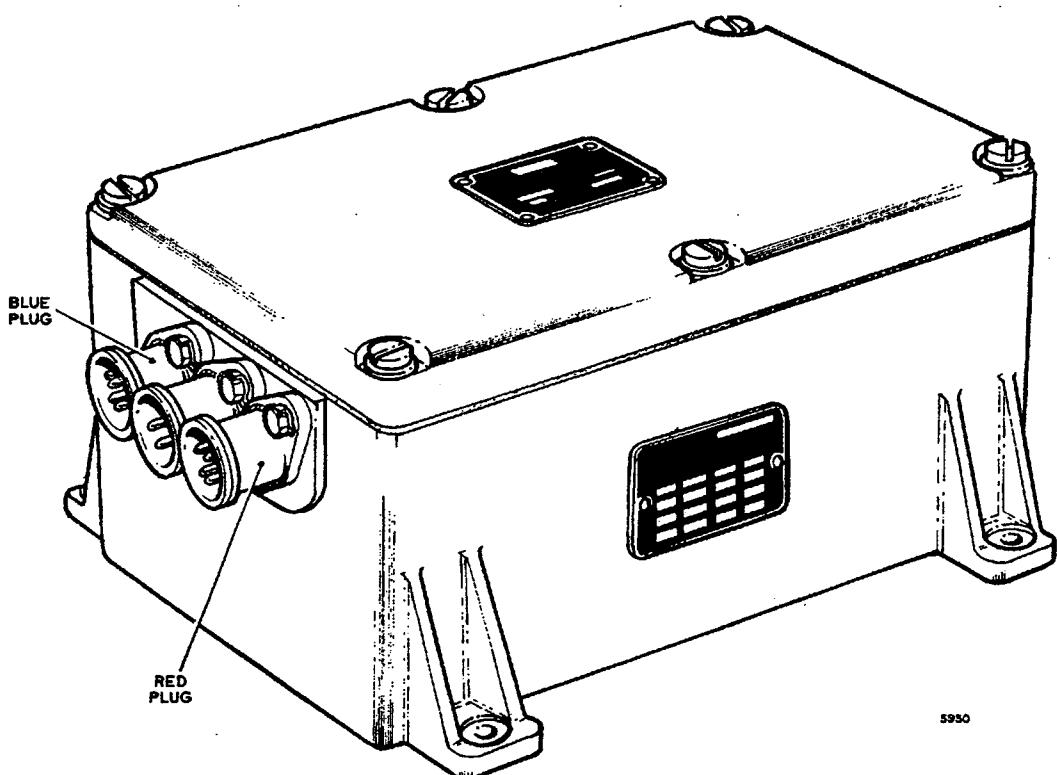
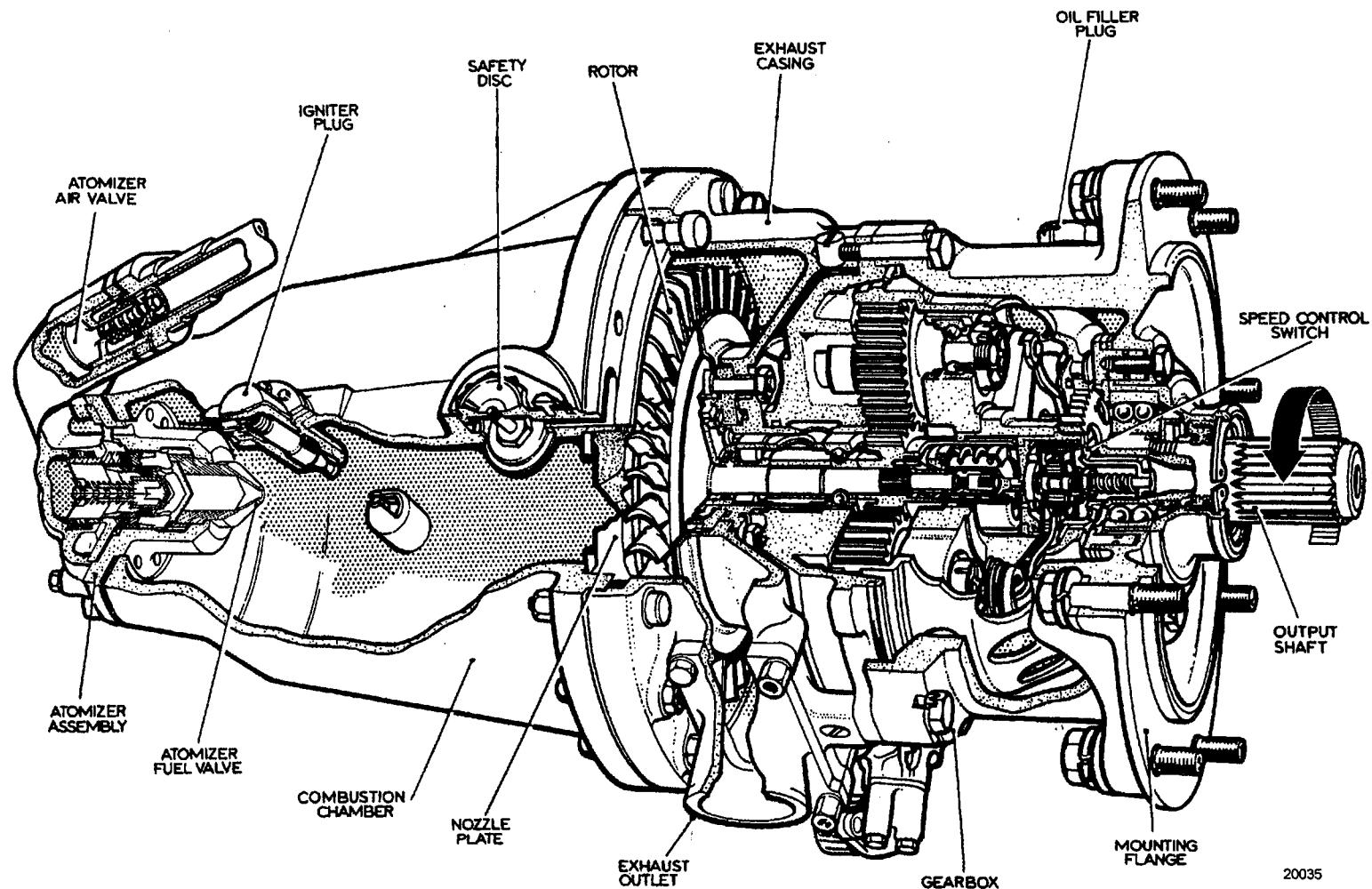



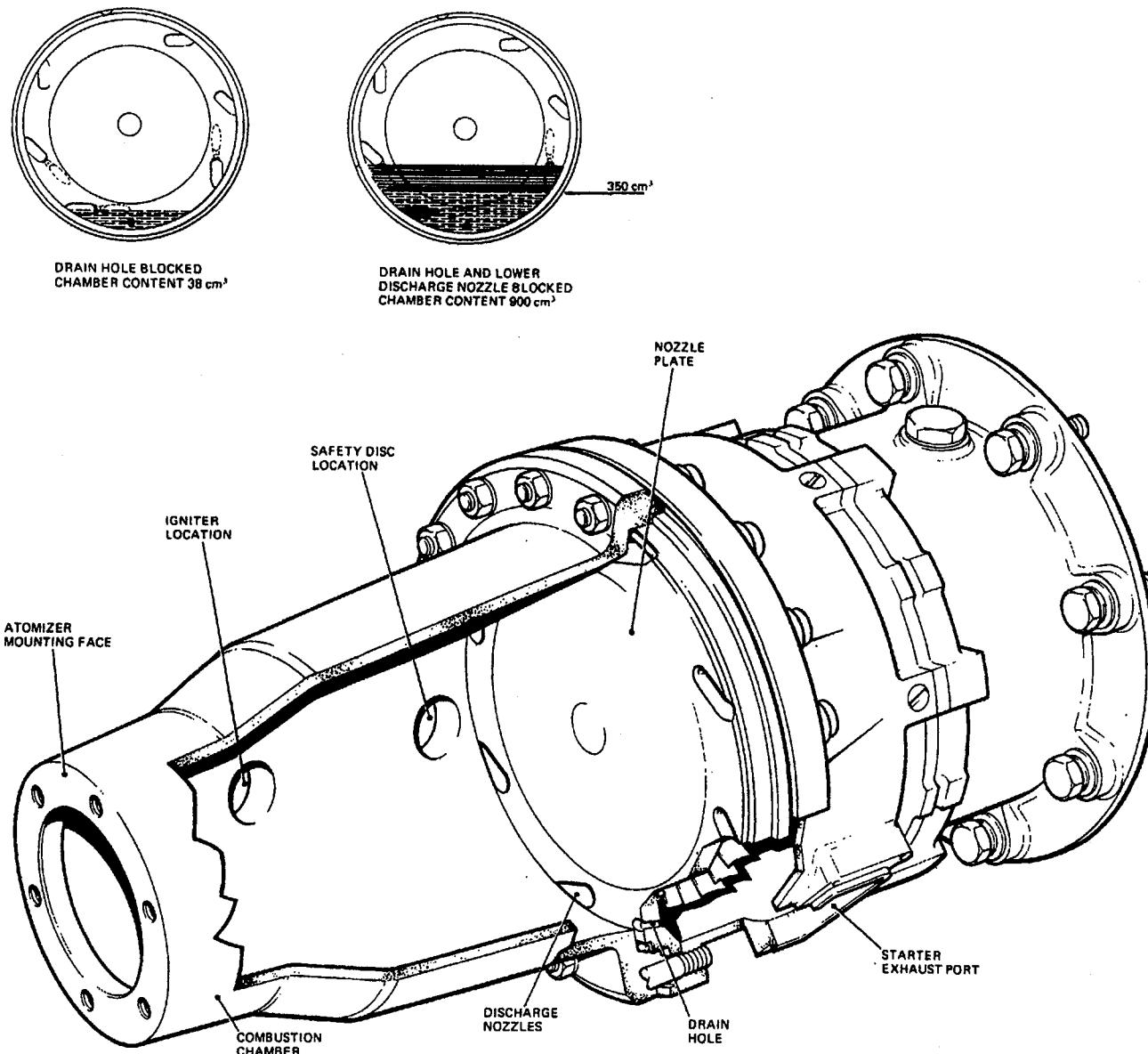
Fig. 5 Control unit

Fig. 6 Starter motor

7.1 AVPIN fuel and air for scavenging are piped to the starter motor and admitted to the combustion chamber through the atomizer. The atomizer comprises a body, a sealed fuel sleeve and a housing, bolted together to retain poppet type fuel and air valves. Separate ducts, connected with an air and a fuel inlet, integral with the housing, direct the fuel and air into the combustion chamber.

7.2 The air valve, comprising a spring-loaded valve housed in a guide, locates in a bore in the air inlet. The valve, which is PTFE coated, functions as a non-return valve and prevents loss of chamber pressure during combustion.

7.3 The fuel valve is similar in construction to the air valve but has no PTFE coating. The valve is secured in the atomizer body together with a fuel distribution sleeve and a swirl chamber. Fuel enters the swirl chamber through tangential drillings in the chamber wall and is ejected, via a nozzle, in the form of an atomized spray into the combustion chamber.


7.4 Incorporated in the combustion chamber are the mountings for the two diametrically opposed igniter plugs and two safety discs. Each disc, comprising a metal diaphragm clamped between two support plates on a mounting stem, is located in a holder and clamped to a seat in the wall of the combustion chamber. Should the gas pressure in the chamber exceed a predetermined safe value, the metal diaphragm will shear and the combustion gas will pass through the holder and a port in the chamber mounting flange direct to the starter exhaust. The disc mounting stem protrudes through the holder to indicate sheared disc.

7.5 A nozzle plate, clamped between the combustion chamber and the gear-box, directs the combustion gas on to the blades of the rotor, through a ring of convergent/divergent nozzles. A gas filled metal joint ring seals the periphery of the nozzle plate and a torque reaction pin, located in the chamber flange, prevents the plate rotating. A drain hole is provided in the nozzle plate to allow any unburnt fuel in the combustion chamber to drain into the starter exhaust.

WARNINGS ...

- (1) A BLOCKED NOZZLE PLATE CONSTITUTES A SERIOUS HAZARD. UNDER NO CIRCUMSTANCES MUST A STARTER BE RETURNED TO SERVICE UNTIL THE BLOCKAGE HAS BEEN CLEARED.
- (2) THE COMBUSTION CHAMBER MUST BE EXAMINED, AND THE NOZZLE PLATE DRAIN HOLE AND DISCHARGE NOZZLES CLEARED, AS NECESSARY, IF ANY OF THE FOLLOWING INCIDENTS HAVE BEEN REPORTED IN SERVICE.
 - (a) THE FUEL PUMP, AIR BLOWER AND MOTOR UNIT FAILS TO SHUT DOWN AT THE END OF THE THREE SECOND AIR CYCLE (DURING PRIMING OR FUEL DRAINAGE CHECKS).
 - (b) MORE THAN FOUR SIMULATED STARTS ARE REQUIRED BEFORE FUEL DRAINS FROM THE STARTER EXHAUST DURING PRIMING.
 - (c) FAILED FUEL DRAINAGE CHECK.
 - (d) MORE THAN FIVE STARTER OPERATIONS, COMPRISING FUEL DRAINAGE CHECKS AND UNSUCCESSFUL ATTEMPTS TO START (WHERE COMBUSTION DOES NOT OCCUR) SINCE LAST SUCCESSFUL COMBUSTION CYCLE.
 - (e) PRESENCE OF FUEL IN COMBUSTION CHAMBER.

Fig. 7 Blocked nozzle plate hazard

WARNING...

(1) A BLOCKED NOZZLE PLATE CONSTITUTES A SERIOUS HAZARD AS IT PERMITS DANGEROUS AMOUNTS OF FUEL TO COLLECT IN THE COMBUSTION CHAMBER. UNDER NO CIRCUMSTANCES MUST A START BE ATTEMPTED UNTIL THE BLOCKAGE HAS BEEN CLEARED.

(2) IF THE FUEL CONTENT IN THE COMBUSTION CHAMBER EXCEEDS 350 cm³ AN EXPLOSION WILL RESULT. SHOULD A START BE ATTEMPTED, CAUSING EXTENSIVE DAMAGE TO THE STARTER AND TO THE AIR CRAFT.

(3) REPEATED PRIMING RUNS, FUEL DRAINAGE CHECKS, UNSUCCESSFUL ATTEMPTS TO START (WHERE STARTER COMBUSTION DOES NOT OCCUR) OR WHERE THE FUEL PUMP CONTINUED TO RUN ON DURING PRIMING MAY DISLODGE CARBON (PRODUCTS OF COMBUSTION) WHICH CAN CAUSE BLOCKAGE OF THE NOZZLE PLATE.

Note...

An unsuccessful attempt to start (where starter combustion does not occur) has the same effect on the IPN system and passes the same amount of fuel as a priming run or a fuel drainage check.

(4) THE COMBUSTION CHAMBER MUST BE CHECKED FOR FUEL CONTENT AND THE NOZZLE PLATE EXAMINED AND CLEARED, AS THE LAST OPERATION JUST PRIOR TO AN ATTEMPT TO START, IF ANY OF THE FOLLOWING INCIDENTS OCCUR:

(a) THE FUEL PUMP, AIR BLOWER AND MOTOR UNIT FAILS TO SHUT DOWN AT THE END OF THE THREE SECOND AIR CYCLE DURING PRIMING OR FUEL DRAINAGE CHECKS.

(b) MORE THAN FOUR PRIMING RUNS ARE REQUIRED BEFORE FUEL DRAINS FROM THE STARTER EXHAUST.

(c) FAILS FUEL DRAINAGE CHECK.

(d) MORE THAN FIVE STARTER OPERATIONS, COMPRISING FUEL DRAINAGE CHECKS AND UNSUCCESSFUL ATTEMPTS TO START (WHERE COMBUSTION DOES NOT OCCUR) SINCE THE LAST SUCCESSFUL COMBUSTION CYCLE.

7.6 The gearbox consists of a mounting flange, a bearing housing and an exhaust casing, bolted together to house the rotor, the epicyclic reduction gear and the speed control switch.

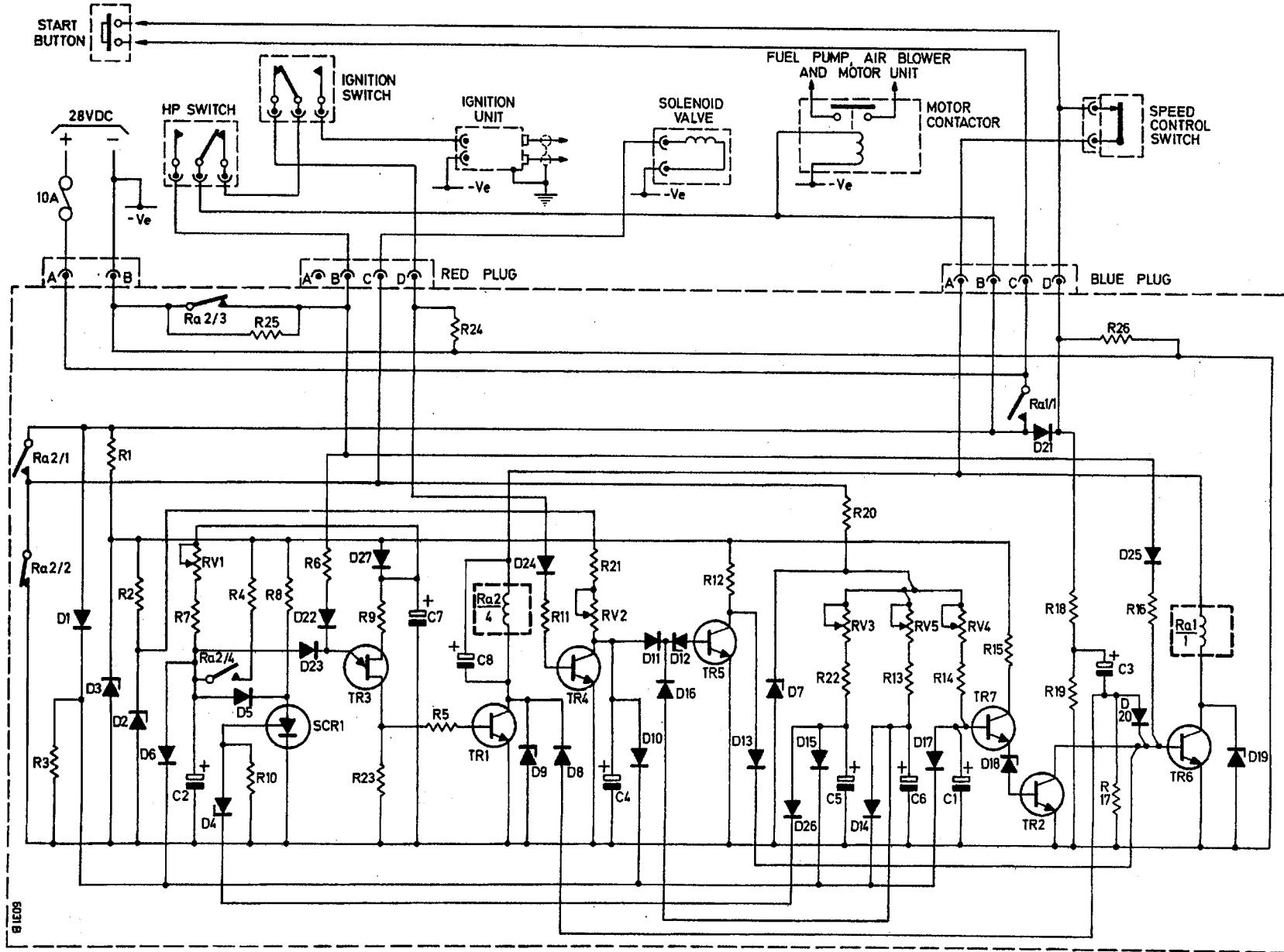
7.7 The rotor shaft is mounted in ball and roller bearings in the exhaust casing and carries the sun gear of the epicyclic geartrain. A labyrinth seal arrangement and a double piston ring seal, mounted on the rotor shaft, prevent gas leakage from the exhaust casing into gearbox and minimize oil loss from the gearbox. A guide plate shrouds the labyrinth and provides a heat shield for the rotor rear face.

7.8 Three satellite gears, mounted on a fixed carrier, transmit the drive to an annulus gear mounted on the output shaft. A self-aligning, double row ball bearing supports the output shaft, and an oil seal, secured in the bearing housing, prevents the interchange of oil with the engine.

7.9 The speed control switch is mounted in a housing at the rear of the satellite carrier and is actuated by a centrifugal governor housed in the bore of the sun gear. The switch is connected, via a sealed plug between the switch and bearing housing, with a two-pin plug on the outside of the gearbox.

7.10 The gearbox is splash lubricated and receives a measured quantity of oil from the engine, on each starting cycle, from an engine mounted single-shot pump. The oil is injected into the starter gearbox via a drilling in the mounting flange.

OPERATION (Fig 8, 9 and 10)


8

8.1 On depressing the engine start button, the positive supply from the 10 A fuse is applied, via pin 'D' on the blue plug, to a 'pulse' circuit R18/C3 and, via the speed control switch in the starter motor, to the coil of relay Ra1. The pulse, applied via D20, 'switches-on' TR6 which energizes relay Ra1. Contacts Ra1/1 close to connect the supply to the motor contactor and via the HP switch, ignition switch, D24 and R11 to TR4 which 'switches-on' and short circuits C4, preventing TR5 from switching on. Simultaneously the supply is connected to the coil of relay Ra1, via D21 and the speed control switch, to TR6, via R1, R12 and D13, and to the time delay circuit RV1/R7/C2, via R1 and D27. Relay Ra1 thus 'holds-in' and capacitor C2 commences to charge.

8.2 Refer to Fig 9 and 10. The motor unit, energized via the contactor on selection of the start, drives the air blower and the fuel pump. Air from the blower is delivered to the starter motor via the air valve in the atomizer. The air scavenges the combustion chamber, expelling any residual combustion materials to atmosphere via the nozzle plate and starter exhaust. Pump delivery fuel passes to the HP switch and solenoid valve assembly. The fuel by-passes the anti-dribble valve and is delivered to the solenoid valve, which opens, under fuel pressure, and passes the fuel through the non-return valve back to the aircraft tank.

8.3 After 2.75 seconds, the voltage on C2, applied via D23, triggers TR3 which conducts, causing TR1 to 'switch on' and relay Ra2 to energize. Under these conditions D20 is reverse biased, via D8, ensuring that, in the event of C3 allowing excessive leakage current, the control of relay Ra1 is not jeopardized. Contacts Ra2/4 provide an alternative circuit to TR3, ensuring that relay Ra2 'holds-in'. Contacts Ra2/1 connect the supply to three time delay circuits (RV5/R13/C6, RV3/R22/C5 and RV4/R14/C1) and to the solenoid valve. The valve closes, under servo action, shutting off the fuel return to the tank and resulting in an immediate rise in pump delivery pressure. This rise in pressure partially opens the anti-dribble valve (against the spring-loaded push rod) and fuel passes via the ignition switch and the fuel valve in the atomizer, to the combustion chamber. At the same time, the rising fuel pressure opens the dump valve, venting the blower delivery air to atmosphere.

Fig. 8 Circuit diagram

8.4 As fuel is injected into the combustion chamber, the ignition switch operates, 'cutting off' TR4 and energizing the ignition unit. The resulting high frequency/high energy discharge is fed to the igniters and ignition occurs. The rapid increase in combustion chamber pressure, following ignition causes a rise in the fuel pump delivery pressure. The higher fuel pressure, acting on the anti-dribble valve, overcomes the plunger spring and operates the HP switch to de-energize the ignition unit and provide maintaining circuits to TR3, via R6 and D22, and to TR6, via D25 and R16. Relays Ra1 and Ra2 thus remain energized.

8.5 With TR4 'cut-off' following the operation of the ignition switch, C4 commences to charge via R21 and RV2. After 0.18 seconds, the forward voltage at D11 causes D12 to breakdown and TR5 to 'switch-on'. D13 is thus reverse biased, removing the supply from R12 to the base of TR6. Where ignition of the fuel does not occur within the delay period, relay Ra1 is de-energized and the starter system shuts down. Should ignition not take place and relay Ra1 fail to release, the system will be shut down, approximately 3.25 seconds from the initiation of the start, when the voltage on C6 is sufficient to 'switch-on' TR5, causing relay Ra1 to de-energize, as previously described. Any fuel collected in the combustion chamber will drain to atmosphere via the nozzle plate drain hole and starter exhaust.

8.6 After 0.5 seconds, from the operation of relay Ra2, the voltage at C5, applied via D26, causes D4 to breakdown and SCR1 to 'switch-on'. C2 is thus shorted and the supply, via D23, to TR3 is removed. Providing that the system is operating satisfactorily, TR3 remains biased on, via D22 as previously described.

8.7 The combustion gas is directed through the nozzle plate on to the blades of the rotor. The resultant drive is transmitted to the engine via the reduction gear and output shaft. The rotor accelerates and, at a predetermined speed, the speed control switch operates, de-energizing relays Ra1 and Ra2 and shutting down the starting system. Should the starter fail to reach cutout speed within 7 seconds of the solenoid valve closing, such as during an engine dead crank, the voltage on C1 will 'switch-on' TR7 and TR2 connecting the base of TR6 to the negative supply line. TR6 will thus 'cut-off', de-energizing relays Ra1 and Ra2. Contacts Ra1/1 open, then Ra2 contacts operate, capacitor C8 providing the 'drop-out' time delay, and the system is completely shut down. Contacts Ra2/2 and Ra2/3 close to provide system protection. The time delay circuits discharge, via the appropriate diode and R3, to ensure that the correct time sequence occurs during a subsequent start.

Fig 9 IPN system diagram - scavenging

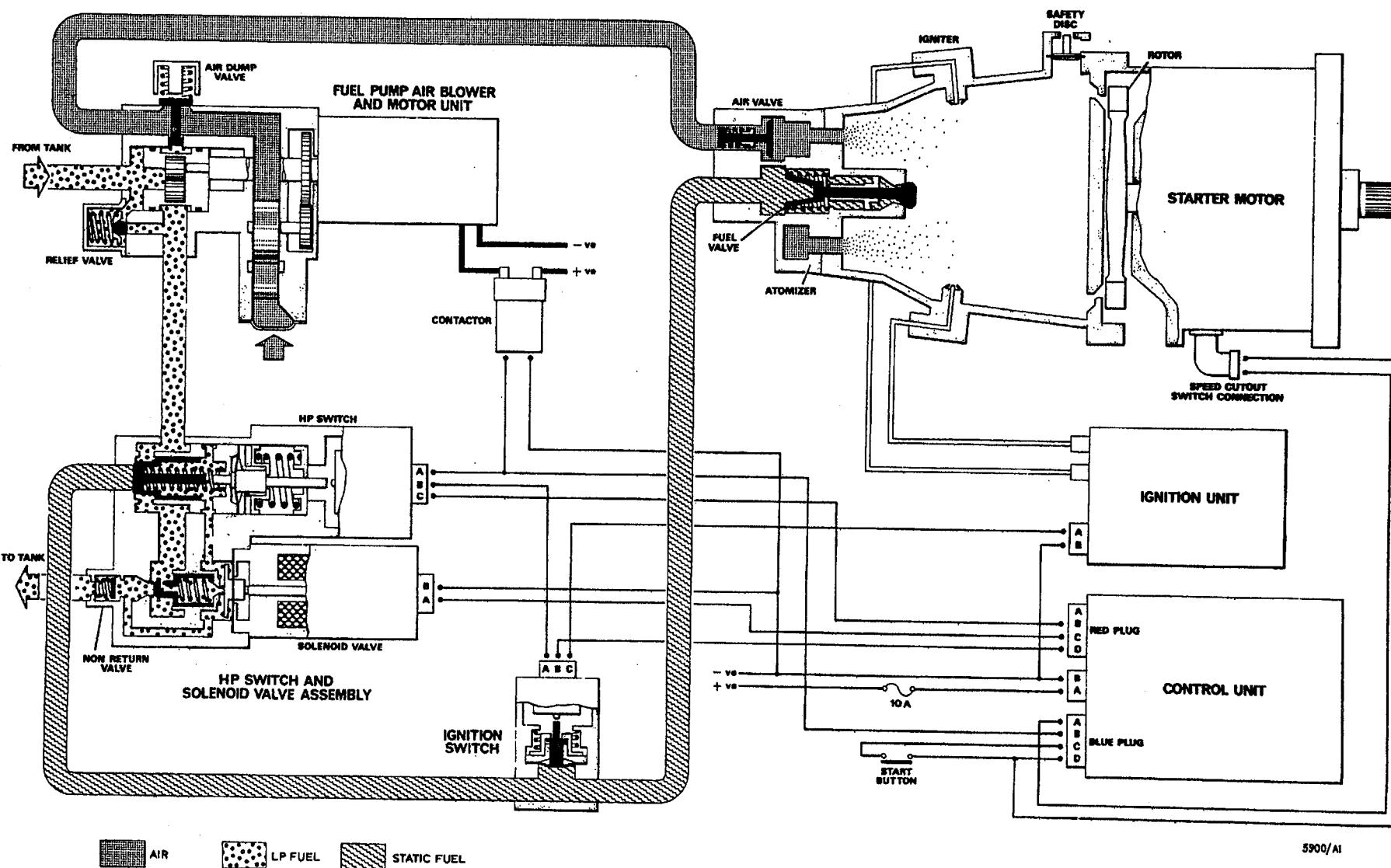
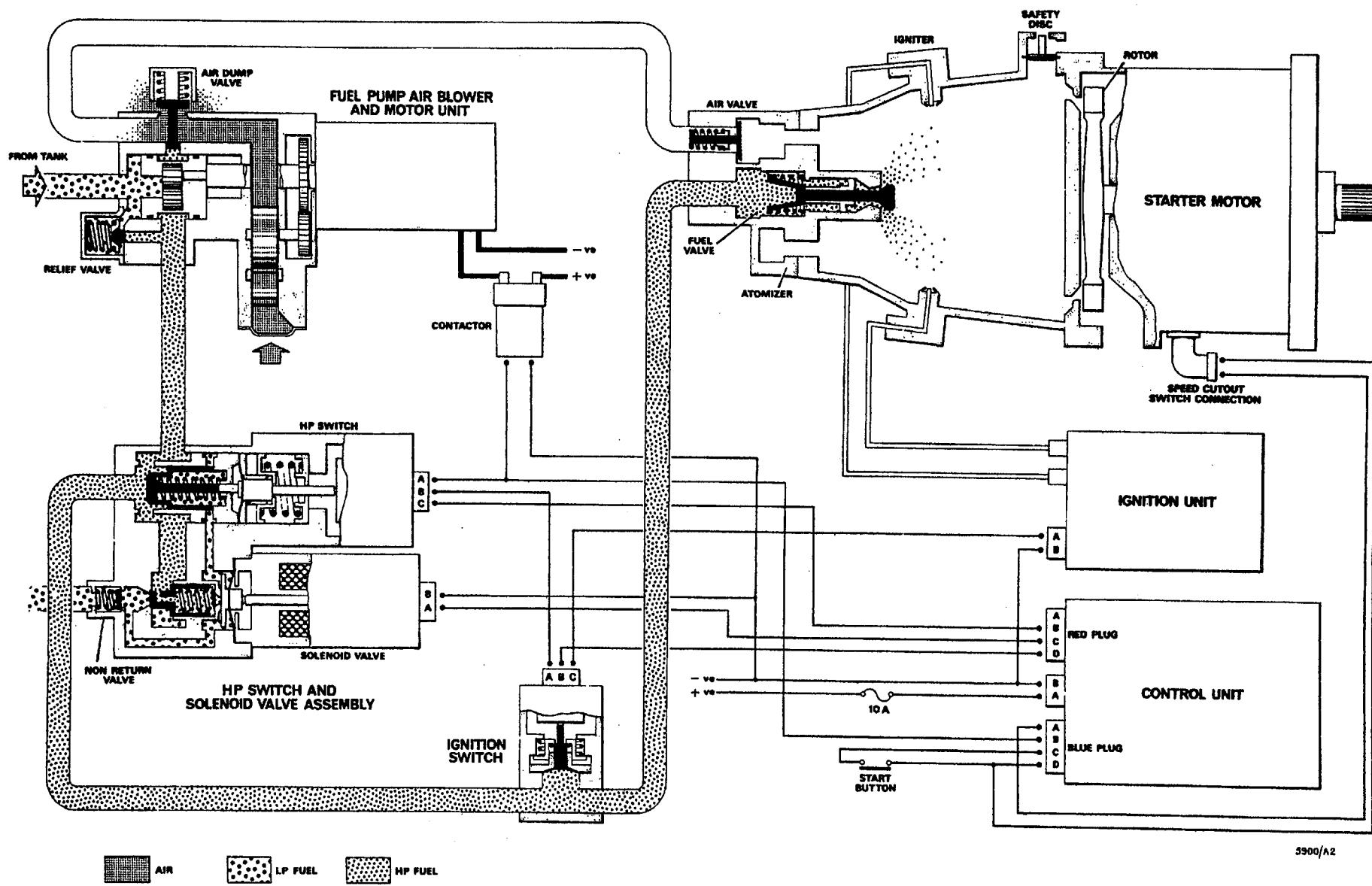



Fig 10 IPN system diagram - combustion

SERVICINGIntroduction

9 The following operations detail the procedures to be effected as a result of fault diagnosis on engine equipment. Reference should be made to the relevant associated air publications, details of which are given in the preliminary pages, for servicing the airframe mounted equipment.

CAUTION

On no account should the starter motor be lifted by means of the pipes as this may result in damage.

9.1 The special tools, test equipment and materials required are listed in Table 1 and are called up in the text by 'Item' No.

9.2 Discard all disturbed tabwashers, O-ring seals, gaskets and locking wire on removal.

WARNING

XG-250 GREASE. XG-250 GREASE IS USED IN THE MAINTENANCE OF THIS EQUIPMENT. REFER TO THE XG-250 GREASE WARNING IN THE PRELIMINARY PAGES OF THIS PUBLICATION.

9.3 O-ring seals should be fitted in the dry condition and the exposed surface lubricated with grease, Item 3.

WARNING

ZX-13 GREASE. ZX-13 GREASE IS USED IN THE MAINTENANCE OF THIS EQUIPMENT. REFER TO THE ZX-13 GREASE WARNING IN THE PRELIMINARY PAGES OF THIS PUBLICATION.

9.4 During assembly lubricate all threads with grease, Item 2.

WARNING

METHYL-ETHYL-KETONE. METHYL-ETHYL-KETONE IS USED IN THE MAINTENANCE OF THIS EQUIPMENT. REFER TO THE METHYL-ETHYL-KETONE WARNING IN THE PRELIMINARY PAGES OF THIS PUBLICATION.

9.5 Only those cleaning agents, listed in Table 1, or their equivalent substitutes, should be used during servicing of the IPN components.

CAUTION

Under no circumstances should an alkaline based cleaning agent be used.

Examine for damage and security

10

- 10.1 Remove light corrosion; reprotect exposed surfaces.
- 10.2 Tighten loose bolts, screws, nuts, etc. (refer Table 2).
- 10.3 Renew fault locking devices.
- 10.4 Check for fuel leaks; renew faulty seals.

10.5 Examine the fuel and air pipes.

10.5.1 Fuel pipes: Smooth indentations on the tube are acceptable provided that such damage will allow the free passage of a 11/32 in. diameter ball through the tube. Sharp indentations or cuts greater than 0.005 inch in dept will entail rejection of the pipe.

10.5.2 Air pipes: Smooth indentations on the tubes are acceptable provided that such damage will allow the free passage of a 7/16 in. diameter ball through the tube. Sharp indentations or cuts are acceptable providing there is no evidence of leakage when the pipe is subjected to an internal air pressure of 50 lbf/in², using test fixture, Table 1, Item 3, and the pipe submerged in water.

TABLE 1 SPECIAL TOOLS, TEST EQUIPMENT AND MATERIALS

Item	Ref No.	Part or spec No.	Description
1		558-1-03452	Test fixture, air pipe
2	34B/9150-99-9100528	DTD 392A	Grease ZX-13 (NATO code S-720)
3	34B/6580-99-2248408	DTD 900/4298	Grease XG-250 (NATO code S-736)
4	30A/9505-99-9606751	DTD 189A	Locking wire 0.028 in. dia (22 swg)
5	33C/6810-99-2203584	--	Cleaning fluid, Methyl-Ethyl Ketone
6	-/7920-99-1204367	--	Lint-free cloth

TABLE 2 TORQUE LOADINGS

Item	Effective load	
Safety disc holder	384 lbf in.	(43.39 Nm)
Atomizer securing bolts	180 lbf in.	(20.34 Nm)
Igniter securing bolts	32 to 35 lbf in.	(3.62 to 3.95 Nm)
Combustion chamber securing nuts/bolts	216 lbf in.	(24.41 Nm)
Fuel pipe-to-atomizer nuts/bolts	100 lbf in.	(11.30 Nm)
Air pipe-to-atomizer nuts/bolts	170 lbf in.	(19.21 Nm)
Gearbox to exhaust casing bolts	100 lbf in.	(11.30 Nm)
Exhaust outlet securing bolts	108 lbf in.	(12.30 Nm)

REMOVAL AND INSTALLATIONSafety disc(s) (Fig 11 and 12)

Remove the safety disc(s)

11

- 11.1 Unlock and remove the locking screw.
- 11.2 Remove the star locking washer, then remove the disc holder.
- 11.3 Remove and discard the disc from the holder.
- 11.4 Remove and discard the sheared outer edge of the disc from the seating in the combustion chamber, then remove any carbon from the seating.

NOTE

Care must be exercised to avoid damaging the seating during this operation.

Install the safety disc(s)

12

- 12.1 Position the safety disc, stem first, in the holder.
- 12.2 Apply an even coating of grease, Item 2, to the threads of the holder then assemble the holder to the combustion chamber and torque tighten to the specified figure.
- 12.3 Position the star locking washer, aligning the locking screw hole, on the holder and secure with the locking screw and tabwasher.
- 12.4 Fully tighten the screw and lock with the tabwasher.

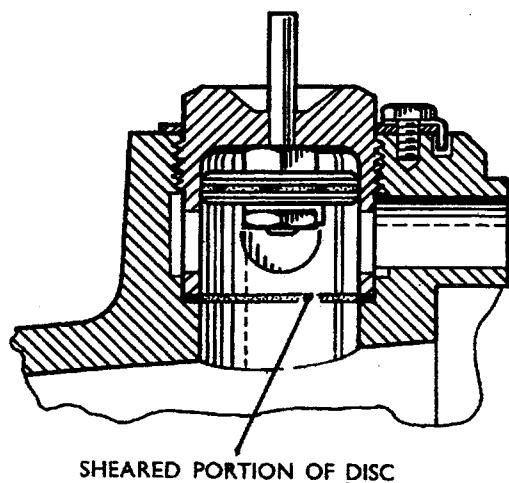
Igniter plug(s) (Fig 13)

Remove the igniter plug(s)

13

- 13.1 Note the angular relationship of the igniter cap to the combustion chamber, then unlock and remove the securing bolts.
- 13.2 Remove the igniter plug, then remove the gasket.

NOTE


Two 2BA tapped holes are provided in the body flange for extraction purposes.

- 13.3 Secure the plug body to the plug cap with the transportation nuts and bolts.

Install igniter plug(s)

14

- 14.1 Ensure that the igniter mounting face in the combustion chamber is clean and free from carbon deposits.
- 14.2 Remove the transportation nuts and bolts, then separate the plug cap from the plug body.

2231

Fig 11 Sectioned view of sheared safety disc

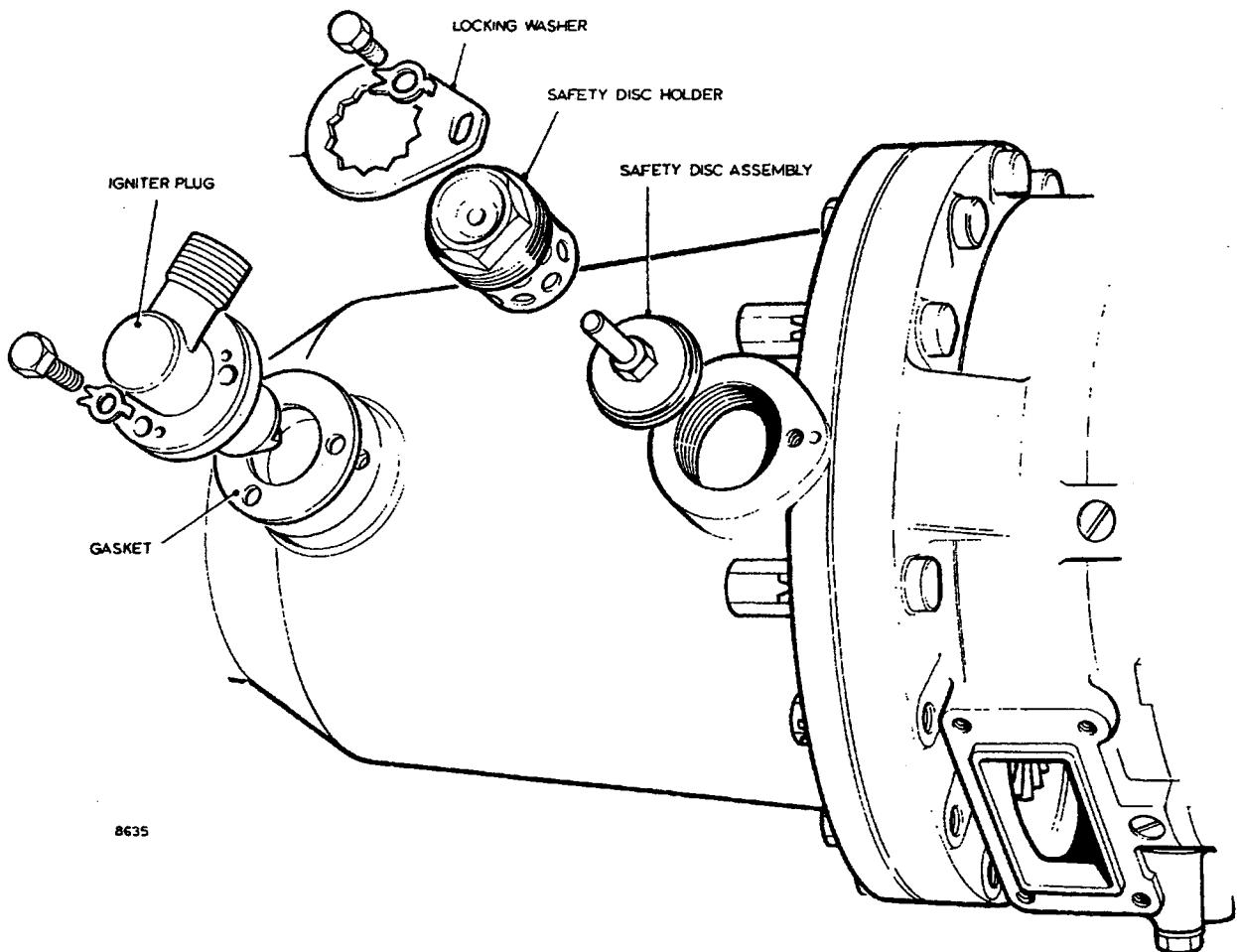
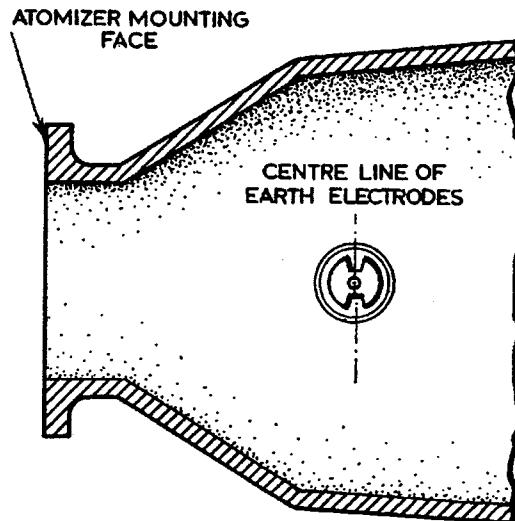



Fig. 12 Removal/installation of igniter and safety disc

2238

Fig 13 Orientation of igniter plugs

14.3 Position the gasket on the plug body, then insert the body with the earth electrodes positioned at right angles to the starter axis as shown in Fig 13.

14.4 Position the plug cap, orientated as noted in para. 13.1 (refer Fig 13) in the body and secure with the bolts and tabwashers.

NOTE

Apply a thin coating of grease, Item 2, to the thread of each bolt.

14.5 Torque tighten the bolts to the specified figure.

14.6 Lock the bolts by bending up the tabwashers.

Atomizer (Fig 14)

Remove the atomizer

NOTE

The securing bolts for the atomizer and for the fuel and air pipes are lifted to the starter and must be retained with the starter motor.

15

15.1 Unlock and remove the nuts and bolts securing the fuel pipe.

15.2 Unlock and remove the nuts and bolts securing the air pipe.

- 15.3 Unlock and remove the bolts securing the atomizer, then withdraw the atomizer from the combustion chamber.
- 15.4 Remove and discard the atomizer gasket.
- 15.5 Remove and discard the internal O-ring seals from the fuel and air pipe sleeves.
- 15.6 Fit the fuel inlet sleeve, air valve and atomizer dust covers and secure with the nuts, bolts and distance pieces.

Install the atomizer

16

- 16.1 Check that the nozzle plate drain hole and nozzles in the combustion chamber are completely clear then, using a suitable suction type cleaner, remove any loose carbon from the chamber; recheck the drain hole and nozzles.
- 16.2 Remove the transit nuts and bolts securing the dust covers to the fuel and air valve sleeves.
- 16.3 Remove the transit nuts and distance pieces securing the atomizer dust cover, then remove the cover.

CAUTION

On no account must the transportation bolts retaining the dust covers be used to secure the atomizer to the starter and/or the fuel and air pipes.

- 16.4 Position the gasket, aligning the bolt holes, on the atomizer, then check that the internal O-ring seals in the fuel and air pipe sleeves are fully locating in their grooves.
- 16.5 Assemble the atomizer, interposing the gasket and engaging the fuel and air pipes, to the combustion chamber, and secure with the bolts and tabwashers; torque tighten the bolts to the specified figure, then lock by bending up the tabwashers.

NOTE

The bolts should be tightened evenly, in turn, to avoid distortion of the housing.

- 16.6 Secure the air and fuel pipes with the nuts, bolts and tabwashers, then torque tighten the nuts to the specified figure.

NOTE

Tabwashers are located under the nuts and the head of the bolts.

- 16.7 Lock the nuts and bolts by bending up the tabwashers.

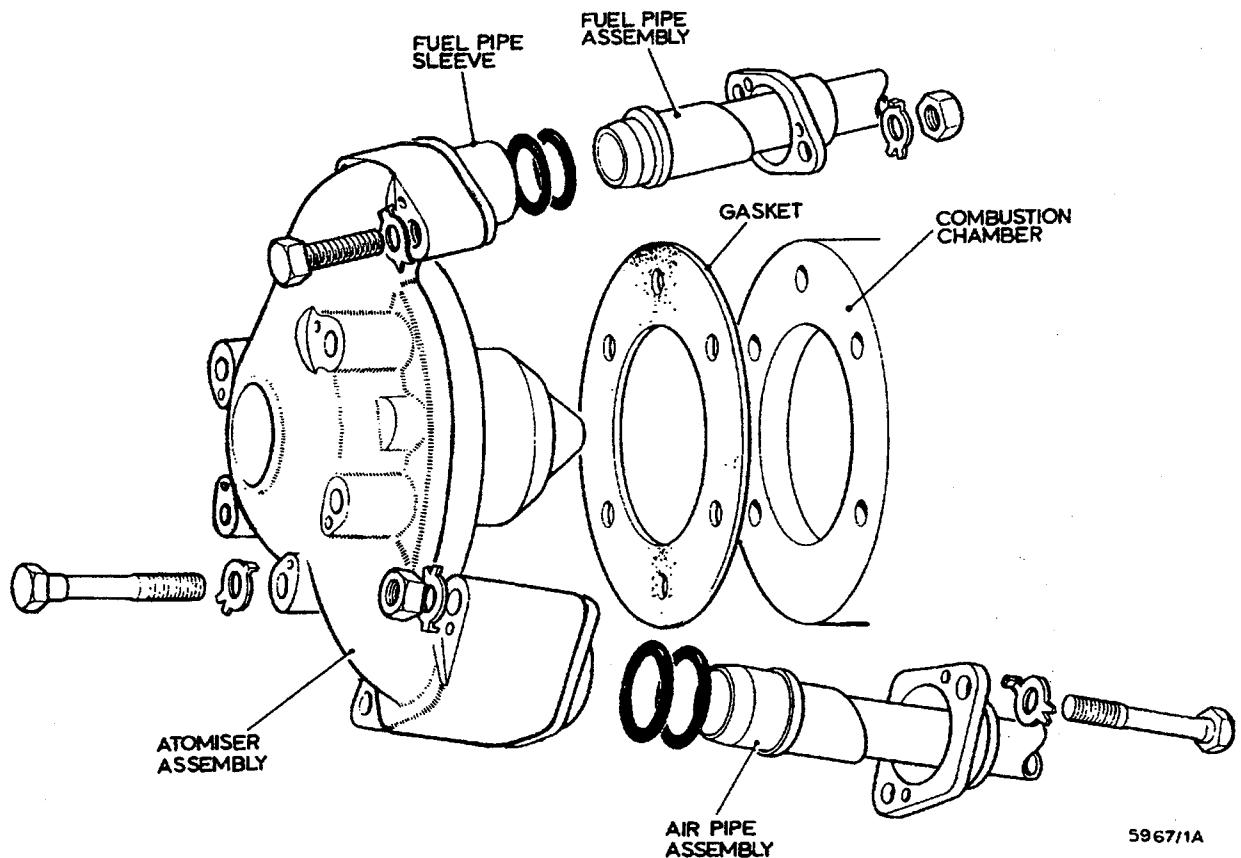


Fig 14 Removal/installation of atomizer

Fuel and air pipe(s) (Fig 15)

Remove the pipe(s)

17

17.1 Remove the atomizer as detailed in para 15.

17.2 Unlock and remove the screws securing the damaged pipe(s), then remove the pipe(s).

Install the pipe(s)

18

18.1 Fit the O-ring seals to the connecting block, then insert the pipe(s) in the block and secure with the tabwashers and screws.

18.2 Fully tighten the screws and lock by bending up the tabwashers.

18.3 Fit the atomizer as detailed in Para 16.

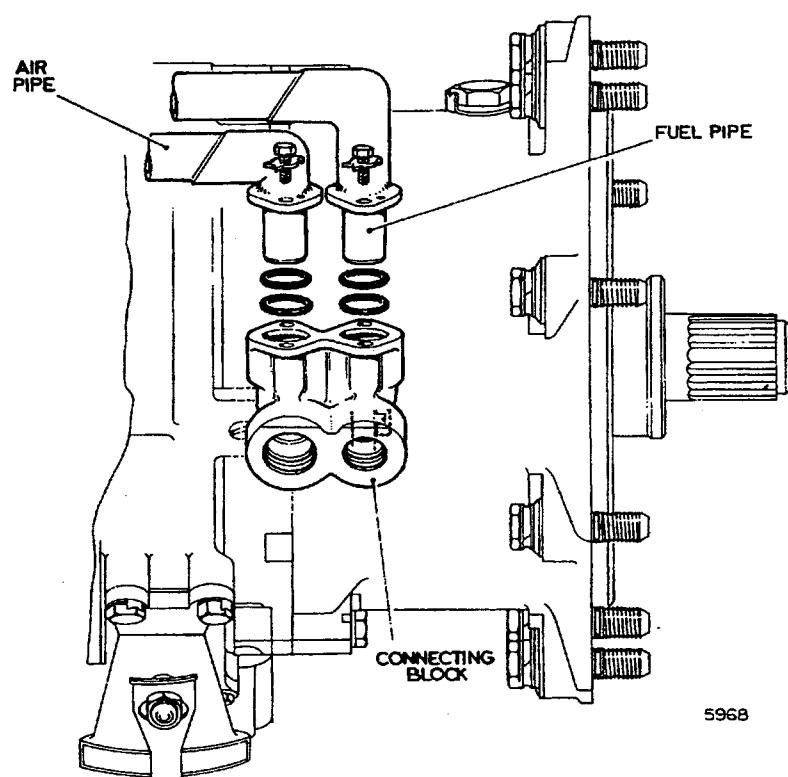


Fig. 15 Removal/installation of fuel and air pipes

This file was downloaded
from the RTFM Library.

Link: www.scottbouch.com/rtfm

Please see site for usage terms,
and more aircraft documents.

