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CHAPTER XV.—AERIAL ARRAYS AND TRANSMISSION LINES 

AERIALS AND AERIAL ARRAYS 
Introductory 

1, From the earliest days of radio communication, the advantages of directional transmission 
and reception, particularly for the purpose of point-to-point communication, have been fully 
appreciated. The earliest attempts in this direction were made at comparatively low frequencies 
(of the order of 15 to 30 kc/s) using L aerials having a great horizontal length—some ten to 
twenty times the height. Such aerials were very expensive in first cost and maintenance. 
With the development of high frequency communication, the employment of highly directional 
aerial systems proceeded rapidly. For any energy-radiating system to possess directional 
properties, its dimensions must be at least comparable with the wavelength of radiation in the 
particular medium. For example, suppose it is desired to radiate a beam of sound waves at a 
frequency of 500 cycles per second by means of a horn. As the speed of sound in air is about 

1,120 feet per second, the wavelength is a or 2-24 feet, and the mouth of the horn, if square, 

should be at least 2 feet by 2 feet, and if circular or elliptical it should have an area ofat least 
4 square feet. In the same way, directional electro-magnetic radiation requires that the aerial. 
system shall have dimensions of at least the same order as the wavelength, and this requirement 
is obviously more easily met at high frequencies (short wavelengths) than at the low frequencies 
formerly employed. 

2. A combination of radiating members designed tor the purpose of directional transmission 
or reception is called an aerial array. The object of an aerial array is to produce some particular 
distribution of field strength in space, according to the nature of the service, the distance of the 
receiving station and other factors. The spatial distribution of field strength may be shown by 
horizontal and vertical polar diagrams as in the case of single aerials. Aerial arrays are for the 
most part employed in long distance point-to-point communication, and for this service the 
horizontal polar diagrams should be long and narrow. Since the propagation is dependent upon 
reflection from the ionosphere the vertical polar diagram should be such that most energy is 
radiated at a low angle to the horizontal, usually between ten and fifteen degrees. It is found 
that the apparent direction from which the strongest radiation arrives at a receiver depends 
partly upon the state of the ionosphere, and may vary through several degrees from hour to 
hour or from day to day. It is therefore not desirable to aim at an extremely directive polar 
diagram. At the receiver, a fairly sharp vertical diagram is an advantage, provided that the 
optimum angle can be decided, because under these conditions less trouble is caused by echo 
phenomena. In general, however, the optimum angle also varies with the time of day, season, - 
etc. Certain special types of communication, e.g. -ground to air and vice versa, may require 
types.of array very different from those used for long distance point-to-point communication. 

3. The properties of any aerial, when used for reception, are in most respects similar to the 
corresponding properties of the same aerial when used for transmission. In particular, the 
directional characteristic is practically unchanged. The current distribution and effective 
impedance are not quite the same because the current is due to a field spatially distributed 
over the whole aerial (not necessarily in a uniform manner) instead of an E.M.F. applied between 
two feeding points, and the impedance changes slightly owing to an indirect effect of the current 
distribution. The fact that the directional characteristic is substantially the same enables the 
merits of a given aerial or array for transmitting purposes to be deduced from its behaviour as 
a receiver and vice versa.
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Current distribution. 
4. The current and voltage distributions along an aerial wire were dealt with briefly in 

Chapter VII. It is now necessary to discuss the current distribution somewhat more fully. 
Consider an aerial suspended above the earth in any manner whatever, e.g. as shown in fig. la, 
and its lower end to be connected to one terminal of a high frequency generator, the other terminal 
of which is earthed. In order to measure the amplitude of the current at different points of 
the wire, we may use a thermo-ammeter, inductively coupled to the aerial by means of a loop 
of wire. This device is in fact in constant use for the adjustment of aerial arrays, and suitable 
dimensions are given later. If arrangements are made to draw this loop along the aerial we 
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Fic. 1, Cap. XV.—Current distribution along wire. 

may obtain an indication of the R.M.S. current at different points. At the end remote from 
the generator, the current in the wire will be zero. As the loop is moved towards the generator 

the current increases, and will be found to pass through a maximum at a distance exactly ; 

from the open end. It then decreases, and passes through a minimum value at a distance 

of 5 from the end. It will then start to increase again and will pass through another maximum 

when the ammeter is oa from the end, this maximum being slightly greater in amplitude 

than the previous one. If at each point in the wire a perpendicular is drawn, and its length is 
proportional to the current at that point the ends of these lines will lie upon a curve as in fig la. 
This curve then gives the current distribution, so far as its magnitude is concerned, but it will
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give no information as to the relative phase of the current at different points in the wire. If, 
however, steps were taken to measure this it would be found that starting from the far end, the 

current at all points in a length A B, i.e. over a distance of nearly > is very nearly of the same 

phase. Over a short length BC, fig. 1b, in the vicinity of the current minimum, the phase 
changes very rapidly, and in passing from B to C a total change of 180° takes place. In the 
distance C D, the current is syn-phased at all points and is therefore 180° out of phase with the 
current in AB. This process of phase reversal again occurs in the length DE, so that the current 
in E F is in phase with that in A B, but opposite in phase to that in C D. . 

5. In Chapter VII it is assumed that the lengths B C, DE, etc., are so small that they may 
be represented by geometrical points, and also that the current at these points, instead of being 
a minimum, falls to zero. This assumption is often made in theoretical work, because under these 
conditions both the magnitude and the phase of the current can-be shown by a sine curve, 
fig. 1c; at points lying above the wire the current is of the same phase throughout, and at 
points lying below the wire the current is 180° out of phase with the points lying above it. 
Alternatively, we may say that if at any instant the current is flowing from B to A, the current 
in B Cis flowing towards B, in the length-C D from C to D and so on. We may therefore show 
the distribution of current along.the wire by drawing a series of arrows of varying sizes as in 
fig. Id. This method is of great assistance when considering the distribution in an array 
consisting of a number of conductors connected in series. 

Nature of input impedance 
6. (i) The distribution of the current maxima and minima is entirely independent of circuit 

adjustment at the transmitter. The tuning adjustments at this end may greatly alter the 
magnitude of the current, but will not affect the relative amplitudes or phases at any two points 
in the wire. The impedance offered to the transmitter will, however, vary greatly with the 
distance of the ‘supply point from the far end. In fig: 2a the transmitter is connected at a distance 

of i, and in fig. 2b, a distance of 2, from the far end. In both cases the supply is connected at 

Le 
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Fic, 2, CuaP. XV.—-Nature of impedance of wires of various lengths
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a current maximum, and whenever this is so, the wire offers an approximately non-reactive 
impedance of the order of 35 to 100 ohms. In fig. 2c, however, the transmitter is connected at 

. a . . : a distance of 5° and in fig 2c, a distance of 4, from the farend. In both cases the supply is 

conneeted at a current minimum and the wire offers an approximately non-reactive impedance 
of the order of 2,000 to 8,000 ohms. 

(ii) Now suppose the generator to be connected at some intermediate point. In order to 
be quite clear it is preferable to draw a considerable portion of line, insert the theoretical current 
distribution and afterwards insert the generator. For example in figs. 2e and 2f, the generator 

has been inserted at a point less than ; after a current minimum, measured from the far end. 

Under these conditions the impedance offered by the wire is equivalent to that of a condenser 
: . . . : A 

and resistance in series. In fig. 2g the generator has been inserted at a point between j and 5 

and in fig. 2h, at a point between 3, and 4, from the far end. In both these cases, the supply is 

j after a current maximum and the input impedance of the wire 

is equivalent to that of an inductance and resistance in series. 

connected at a point less than 

7. (i) Theoretically, a wire in free space has zero reactance whenever its length is a multiple 

of i. Actually, the velocity of wave propagation along copper wires located near to a conductive 

lane is about four per cent. less than the velocity of electro-magnetic waves in free space, and 
if a length of wire is to be non-reactive its length should be only about 0-96 of the theoretical 

value, Thus an aerial having an electrical length of j should be about 0-244 in actual length 

and so on. The exact location with respect to the ground, and the variation in permittivity 
and conductivity of the latter, must necessitate a slight variation of this figure in certain instances. 
In practice it may be found necessary to reduce the lengths of radiating members as much as 
ten per cent. below their nominal length, because discontinuities such as sharp bends, suspension 
insulators, etc., all tend to reduce the velocity of propagation along the wire. 

(ii) In the early days of radio communication the frequencies employed were very much 
lower than those now in general use, and it was as a rule, only possible to employ aerials having 

A 
r 

of the aerial are (a) its effective resistance and (b) its effective capacitance. With the higher 
frequencies now in use, however, the input impedance may be equivalent to that of an inductive 
or capacitive resistance, or purely resistive, depending upon the ratio of length to 4. 

a length very much less than In these circumstances, the most important electrical constants 

Radiation resistance 
8. The radiation resistance of an aerial is defined in Chapter VII; expressions giving the 

radiation resistance in certain simple cases are also contained therein. The conventional method of 
finding the radiation resistance of any given aerial is to develop an equation giving the field strength 
at a]l points in space. In Chapter I it is shown that the energy density of a uniform electric field of 

“I? 

8x 
in this expression, and the result multiplied by the velocity of propagation, we obtain the energy 
per second, i.e. the power, which is passing through any unit area in a plane perpendicular to 

strength I is ergs per cubic centimetre. If the calculated value of field strength is inserted
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the direction of propagation. The total power passing through a sphere surrounding the radiator 
is obviously equal to that radiated, hence, on summing up the total power passing through 
every unit area on the surface of this sphere, and then dividing by the R.M.S. loop current, the 
quotient is the radiation resistance. Another method is to sum up the energy passing through 
a cylinder of unit thickness immediately surrounding the wire. This method gives both the 
radiated power and the wattless volt-amperes required to maintain the induction field, and 
therefore gives the aerial impedance as the vector sum of the radiation resistance and the reactance 

of the aerial. In this manner the impedance of as dipole in free space is found to be 

73°3 + 742-5 ohms, and the impedance of a vertical ; aerial over a perfectly conductive earth, 

36-6 + 721-25 ohms. When tuned to resonance with the frequency of the supply, the reactance 
of the aerial is annulled, although of course the induction field is still maintained. 

9. (i) In practice, the radiation resistance is affected by the proximity of the ground, to an extent 
depending upon the permittivity and conductivity of the soil. The radiation resistance of a vertical 

: dipole, with its lower end at ground level on a perfectly conductive earth, is approximately 

100 ohms, whereas in free space it would be 73-3 ohms. The nature of the variation with height 
above ground level is shown in fig. 3. Over moist earth of permittivity x = 25 and conductivity 
o = 10° E.S.U. the actual radiation resistance is found to be very close to the theoretical value 
given by this curve, which may therefore be used for practical purposes. Application of the image 

theorem of paragraph 35 shows that a horizontal 5 dipole very close indeed to the earth’s surface 

will radiate infinitesimal energy, i.e. the radiation resistance of such an aerial approaches zero. 
When far above the surface, however, its radiation resistance is 73-3 ohms, the theoretical nature 
of the variation with height being also shown in fig. 3. Over the ground specified above, however, 
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Fic. 3, Cuap. XV.—Radiation resistance of dipole.
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the resistance at heights. less than i was found experimentally to be given by the curve shown 

in dotted line. It will be observed that in both solid-line curves, the radiation resistance 
approaches its free-space value in an oscillating manner. 

(ii) The radiation resistance of an aerial array can be calculated by either of the methods 
previously referred to, but except for very simple arrays, the labour is prohibitive. In any event, 
it is impossible to define the radiation resistance of an array of which the various: members 
carry currents of different magnitudes, except by the somewhat arbitrary method of referring 
it to the current in some particular member. Subject to this limitation, however, it is possible 
to compute the radiation resistance of a simple array from that ot each member and the mutual 
impedance between the various members. 

Radiation from hertzian doublet 
10. (i) As an introduction to the theory of aerial arrays we may first consider the radiation 

field, yo, in the equatorial plane of a single hertzian doublet of length /, situated in free space, 
fig. 4a. In this theoretical radiator, a conduction current 4 = J cos wt is assumed to flow in the 
wire joining the two capacitance areas, and a corresponding displacement current in the dielectric 
between them, but the elementary portions of the conductor itself are supposed to have no 
capacitance, so that the amplitude % of the current is the same at all points in the wire. The 
conduction current consists of a number N of electrons of charge e E.S.U. = g coulombs, the 
average instantaneous velocity being, say, 6 centimetres per second. Let the cross-section of 
the conductor be A cm?; the total volume of wire is then Ai cm® and the density of the moving 

charge inside the wire is Nq coulombs per cm. The current density will thereiore be 
Al 

Nq coulomb cm Ngb a 2 Al ans * b= aT coulomb per second per cm? or amperes per cm’, and the 
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Fic. 4, CHap, XV.—Radiation from hertzian doublet.
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total instantaneous current Ne amperes. We may therefore write 

Nqb 
TT = oF cos wh, (= 

ld 
° = oe we we 1 0 Ng 2S | (1) 

The radiation depends upon the acceleration a = 2 of the electrons. Since 0 is of sinusoidal 

form, 
ol Ff 

= — —— sin ot 
Nq 

ol n = Fp 8 (ot + 5) we . es (2) 

(ii) The object of keeping the above expression in cosine form is to bring into prominence the 

relative phase of the radiation and the current. In Chapter VII it is shown that the electric 
field strength y due to a single accelerated electron at a point P, distant r centimetres from the 

ae 

cy 

the electrons in the wire are sinusoidally accelerated, the field at the point P is also sinusoidal, 
but will lag behind the acceleration producing it by an angle 6, owing to the finite velocity of 

propagation, c. Instead of expressing the field strength in dynes per unit charge, it is more 

convenient to express it in practical units. The field set up by the oscillating charge of g coulombs 

centre 0 of the doublet, and in the equatorial plane, is equal to —- dynes per unit charge. If then 

11 

is therefore given by substituting, in the formula » = = 9x 10 Ne ol 9 cos (of + 3) for 

the acceleration a, and Ngq for the charge ¢, giving 

9x 104 al 2 Fd = xz— 6). .. .- 3 

It is now convenient to put c= 3 xX 10”, o = 2af= ae, giving the amplitude Ty as 

A 2m lS 
—_ il — — To=9X 100X — X = 

60 al 
= I. 

Thus the complete expression for the electric field in volts per centimetre is 

Onl _- % 
Yo= “Gy 9 cos (at +5 — 9). .- . .. (4) 

Note that the lengths /, 4, and y are ali measured in centimetres. If these are given in metres 
the field strength is expressed in volts per metre ; or if the constant 60 is replaced by 37-25, and 
ry is measured in miles (/ and 4 still in metres) the field strength is in millivolts per metre. 

11. The amplitude of the field is seen to vary inversely as the distance 7, but is independent 
of the angle @. Hence the polar diagram in the equatorial plane is a circle with the axis of the
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dipole as centre, fig.4b. The phase angle 6 obviously depends upon the distance 7, for the wave 

travels this distance in a time ‘, hence 6 = < = = y, and therefore 

60 xl x nx 
r= GE I 08 (ot +5 — Fr). A) ee + (5) 

If the point P, instead of being in the equatorial plane, is situated at an angle p above it, the 
field strength will be proportional to cos ¢ and is 

oS 9. 08 9.008 (at +5 — Er) . . te (6) 

Considering the amplitude only, we see that this varies with the angle ¢ ; .in the equatorial plane, 

gy = 0, and the amplitude of the field strength is Sa &¥, while in the polar direction, » = 90°, 

the amplitude is zero. The variation of y with 9 is easily shown by means of a polar diagram 
as in fig. 4c in which the radius vector is proportional to cos gy. The diagram therefore consists 
of two circles of unit diameter which are in contact at the axis of the doublet. By rotating the 
diagram round this axis we obtain a solid surface giving the relative field strengths in all directions 
in space. It is most important to remember that this solid surface does not represent the wave 
front, the latter being a spherical surface. . 

Radiation from half-wave dipole 
12. The half-wave aerial differs from the hertzian doublet in its current distribution. Let 

the current at the centre of the dipole be ¢ = % cos wt. If the distance, y = OA, fig. 5, is 
measured from an origin O at the centre of the wire, the peak current 9, at the point A is 

Py cos oy, To find the field strength at a point P, distant r from the origin and in the - 

equatorial] plane, we consider the field set up by an elementary length dy of conductor, distant 
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Fic. 5, Caar. XV.—Notation for dipole in free space.
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y from the origin ; the current over this short length is practically uniform and we may therefore 
treat the element of conductor as a hertzian doublet of lengthdy. Obviously the field dy. at P, 
due to this element of conductor, is 

dyo = ( Po COS =) cos (o + 3 -— 

Now the fields produced at P by all the elements of conductor will be in phase, and the total 

field is that contributed by all such elements above and below the origin, i.e. from y = + ; to 

a 
y= — Zand 

60 az Qn 
= Socos (at +5 —s"r), .- we 7 (7) 

At a point P, above or below the ‘equatorial plane, subtending with the latter an angle g, the 
field is not now merely proportional to cos as in the case of the hertzian doublet. Instead, a 

cos ( 2 sin 9? 

factor —~z5 must be introduced, giving 

60 cos( Zin 2) yy) 

Ye = arg Io 08 ( ot + 5 — a) eae .. (8) 

cos G sin p ; . ; 

The factor ~ (Geer) is plotted in fig. 6. It is seen to consist of two approximately elliptical 
figures, in contact on the axis of the dipole. By rotating this figure we obtain the solid polar 
diagram as in the previous instance. 

13. Collecting | the principal formulae so far developed, we have the following expressions 

for the amplitude r, of the electric field at an angle y with respect to the equatorial plane. 

(i) For the hertzian doublet 
A 60 al 
In = iy Fo COS 9, 

(ii) For the ; dipole 

a. 
60 cos (Fee), 

A, = © 5,7 V*h 
cos p
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Fic, 6, Caap. XV.—Current Distribution Factor for 4 dipole. 

Each of these expressions may be divided into three factors, 

60 
(a) — &%o, which is common to both. 

0) In @), &. 
the distribution of capacitance along the aerial, and may be called the respective Form 

The corresponding factor in (li) is unity. These factors depend upon 

Thus the Form Factor of a hertzian doublet is ae 

cos G sin °) 

(c) In (i), cos g. The corresponding factor in (ii) is —~~_—* - 

These factors take into account the effect of the current distribution upon the relative 
phases of the elements of field strength at points above and below the equatorial plane, 
and may be termed the respective Current Distribution Factors. In general, if the Form 
Factor is denoted by F, and the Current Distribution Factor by f (gy), the amplitude of the 
electric field at a distance 7 may be written 

° Io.F.f (9). 

Factors. and of a dipole is unity. 

A= 

Power input . 
14. Suppose it is required to produce a certain field strength at a point P, distant 7 miles 

from 
near 

the radiator, where 7 is sufficiently great to justify the neglect of the induction field but so 
that the effects of attenuation are negligible. Working in R.M.S. values, we have from the 

previous discussion 

r= *® F, f(g) I (millivolts/metre) 
and if the radiation resistance of the aerial is R, ohms the power radiated is P; watts, where 

P, = PR,.
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If P,; is given, then, the required current is 

P, 1- JE 
and the field strength at a distance r is 

r= Bf) [EE 

Pe= (9-95 FXTG 5) Re 

Also, the input power will be given °y 

Pim 37°25 X F x fe oy Re 

where R, is the total resistance of the aerial. For example let the point P be in the equatorial 

plane of a 5 dipole. Then F = 1, f (p) = 1. Let the radiation resistance be 73 ohms and the 

loss resistance 10 ohms. Then to produce a field of 100 millivolts per metre at a distance of one 
mile, the power input must be 

P, = ‘(oas) x 83 

37°25 

== 593 watts. 

The power actually radiated will be ze of this or 522 watts. 

Field due to two parallel dipoles 

15. Let us now consider the field strength produced by a simple array consisting of two 
parallel half-wave dipoles in free space; these are spaced apart by a distance d as shown in 
plan and elevation in fig. 7, where A and B are the wires and O a point which will be regarded 
as an origin. We will first calculate the radiation in the equatorial plane perpendicular to the 
wires, each of which is assumed to carry a current 4 = % cos wt, i.e. the currents in the two wires 
are in phase. As before, consider the field at a point P, distant 7 from the origin O, and let 
r>>A. Then AP, OP and BP are practically parallel to each other, and OP =r, AP = 

ad a 
r+ Z 00s 6, BP = 17 — 5 cos @. 

The field produced by the current in the wire will be 

mu ln d 
vs = K Io CoS jet 5-7 r+ 50050); .. a .. (9a) 

where K == —% + ad ; similarly the current in B will produce a field 
r+ 3 cos 6 

ys = K 3% cos jor+5 _= (7 — Scos D} 7 . -» (9b)
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and the total field y, = y, + ys, or 

_ n ln na ‘ an Un na 
0 = K S| cos jer+5- Zr zs of + cos jet aS r+ TZ cos a |. .. (9c) 

By a formula developed in Chapter V, this may be written 

ro = 2K So cas (7 cas 6) eos ot + 5 — “Trt. . . .. (10) 

Thus the amplitude of the electric field is 

R= 9, X 2 cos (F os a). 

NB. As OP >>> AB, AP OP BP are considered Io be parallel 

Fic. 7, Coap. XV.—Notation for parallel dipoles in free space. 

Grating factor 
16. The amplitude of the field due to a single dipole situated at the origin O would be 

P = 60 Io 

Yr 

and we see that the field due to two parallel dipoles, separated by a distance d, and carrying 
equal, syn-phased currents, is chtained by multiplying that of a single dipole by the factor 

2 cos ( = cos @ ), which is called the equatorial plane Grating Factor for a pair of dipoles. Its 

value obviously lies between the limits zero and 2, and is plotted in polar co-ordinates in fig. 8, 

line A, for various values of 4 from 0 to 4. The circle surrounding each diagram has a radius 

of 2 units, representing the upper limiting value of the Grating Factor. The first diagram, 
fig. 8, Al, is for d = 0, i.e. two superimposed dipoles each carrying unit current, which are
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equivalent to a single dipole carrying a current of two units, hence the diagram corresponds with 

the limiting circle. For other values of of upon the line joining the two aerials, the field 

strength varies with the spacing. As d is increased toward the value 4 the field strength 

gradually decreases, and when ¢d = ; the radiation from the two aerials is in anti-phase at all 

points along this line, so that complete interference, i.e. cancellation, results. For values of d 

greater than * multiple lobes appear. In the directions 6 = 0 and 6 = 180°, the Grating Factor 

is 2, if m is even, and zero, if » is odd, whenever d = ua Upon a line perpendicular to that 

joining the two aerials, the Grating Factor is equal to 2 for all values of d, because the radiation 
from both aerials reaches all points simultaneously. 

17. Now consider the field prodiiced in the equatorial plane by two dipoles in which the 
currents are of equal magnitude but differ in phase. Let the aerials be A, carrying a current 
4, = Jo cos wt and B with the current ig = % cos (wt + f). Then 

1 = K 8, 08 (wt + 5 — Fr — “eos 0) 

mm = K Sp 00s (wt + 5 — Fr + cos 0 + p). 

vy typ = K I% {eos (fe ~ cos 0) + cos ( af + 4 cos 6 + A) 

and the total field becomes 

d a 
Yo = K I E CS = cos 0) -++ cos (vo + > cos 9+ p) |. (11) 

To simplify, put of = X, “cos @= Y, P= X — Y,R=X+Y,Q=R-+ 8; then 

yo = K I {cos (X — Y) + cos (X + Y + B)} 

= K YA {cos P + cos Q}. 

By Chapter V, cos P+ cosQ = gi te cos HS ©. 

Whence 

Yo = 2K Io cos AEF A), A— VI (KF VIB 

= 2K I; {cos (X +5) cos —(¥ +5t) 

= 2K Jo [ cos ( at + 5) | cos (4 cos 8 + 5). vs -» (12)
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B The Grating Factor is therefore 2 cos (= cos 8 + 3) and is plotted in polar co-ordinates in 

fig. 8, lines B to E, for various values of f and f Of particular interest is the bottom row, 

which shows the fields due to two aerials carrying currents in anti-phase, Obviously, the 
radiation from the two cancels out along a line perpendicular to that joining the two aerials, 
while along that line, the Grating Factor is zero if d is an even number of half wavelengths, and 
equal to 2, if d is an odd number of half wavelengths. Line C will again be referred to in con- 
nection with reflector aerials, while line E is of importance in the study of loop aerials, both for 
reception and transmission. We see then that fig. 8 has many important applications and will 
repay a very careful study. To facilitate the enlarged reproduction of any particular diagram, 
each limiting circle has been divided at 15° intervals, and a series of concentric circles of various 
radii inserted: within the limiting circle of fig. 8, A 1. When adding these diagrams, it must be 
noted that the radius vector changes sign on passing through a zero. An example is given in 
paragraph 41. 

Combinations of pairs of dipoles 

18. Consider an drray of four parallel dipoles spaced one-half wavelength apart and fed 
with equal, syn-phased currents as in fig. 9a. e polar diagram in the equatorial plane may be 
obtained in the following manner. Divide the array into two pairs of aerials ; the polar diagram 
of each of these pairs is, by the previous paragraph, the elongated figure-of-eight shown in 

diagram A 5 of fig. 8, and repeated in fig. 9b. For the four aerials spaced apart, we may 

now substitute two aerials, each having the above polar diagram, but spaced one wavelength 
apart as in fig. 9c. According to diagram A 9 of fig. 8, two dipoles with this spacing, and syn- 
phased currents, have a polar diagram with four lobes; this diagram is repeated in fig. 9d. 

_Fia. 9, Cuap. XV.—Development of polar diagram for four parallel dipoles carrying syn-phased current.
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The field distribution of the combination of two radiators which, individually, give the figure-of- 
eight diagram, fig. 9b, may now be obtained by multiplying together the corresponding polar 
radii of figs. 9b and 9d, giving the result shown in fig. 9e. The principle of combining 
parallel aerials carrying syn-phased currents is the basis of what are called broadside arrays. 

19. The above process may obviously be extended to obtain the field distribution in the 
equatorial plane for any number of dipoles irrespective of the spacing and the phase of current in 
the respective aerials. Thus, suppose we have an array of four parallel dipoles A B C D, fig. 10a, 

A 

4 
in A, the current in C lead by 90° on that in Band se on. The polar diagram for the pair A and 
B, or for the pair C and D, is given in fig. 8, diagram C 3, which is reproduced in fig. 10b; it 

/ [19 7{880— (270 
ot A ree — Awe -A 0 ge A 

4 4 4 2 

(8) 

'- 2unils— i 2units 4 

spaced.— apart, each carrying a current of J amperes. Let the current in B lead by 90° on that 

(b) (c) 

Fic. 10, Caar. XV.—Development of polar diagram for four parallel dipoles 
with currents in progressive phase difference of 90°. 

is a cardioid or heart-shape. For the four dipoles, we may now substitute two radiators each 

having this polar diagram, spaced 9 apart, and with currents in anti-phase. Two dipoles 

with this spacing and current phase give the polar diagram E 5, fig. 8, reproduced in fig. 10c. 
The polar diagram of the four-element array is found by multiplying together the corresponding 
polar radii of diagrams C 3 and E 5, resulting in the diagram shown in fig. 10d. It will be 
observed that the array is substantially uni-directional, maximum radiation being directed in 
the direction of the aerial in which the phase of the current is lagging. The principle of combining 
parallel aerials carrying currents differing by a constant angle, which in turn is related to the 
spacing of the elements, is the basis of what are called end-fire aerial arrays. 

Radiation in the plane of the aerials. 
20. We may now investigate the shape of the polar diagram in the plane containing the 

aerials. In fig. 11 let A and B be two parallel dipoles each carrying a loop current i = % cos wt. 
At a point P at an angle » above the equatorial plane, situated at a distance 7 from the origin O, 
where r>>A, the fields will be 

cos (Zsiv ) 9 7 
n T 

y, = K 9, ————— cos Ez 5 > (r+ $ cos») | 
COS @ 

cos (55 
; 2 ) nm Qn a 

Vp = K 9. ag [ ot + 37 a (r —$ cos) |.
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cos (5 sin r) 

cos @ 
The Current Distribution Factor 

has previously been introduced to account for the fact that the dipole does not radiate uniformly 
in any plane perpendicular to the equatorial. The combined field is y, = y, + y,; and 

cos ( 3" ve (gene) 

‘, =| 2K 9, ae wd aos 4 cos ¢) | cos ( wt + 5 — any). (13) 

(by F (Y) 

VW (€) GF) 
(d) Polar diagram in the 

plane conlaining 
the dipoles 

Fie. 11, Caap, XV.—Radiation in plane containing two parallel syn-phased dipoles.
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The portion of the right-hand member which is enclosed in square brackets is the amplitude of 
the field in the direction O P. It is the product of three factors 

,; 60 (i) K Bg = = So, 

nm 
cos G sin °) j 

(ii) Soe ie. the Current Distribution Factor of a 5 dipole. 
P 

(iii) 2 cos (2 cos ?), ie. the Grating Factor for a pair of syn-phased dipoles in the 

plane containing them. This is of exactly the same form as the equatorial plane Grating 
Factor, but is a function of the angle g instead of being a function of the angle 6. 

The Current Distribution Factor is given by fig. 6, and the Grating Factor by the upper row of 
diagrams in fig. 8. Thus the resultant amplitude in any particular case may be obtained by 

multiplying the constant © Jy by two polar radii obtainable from the diagrams. As an example, 

take d = 4 Fig. 11bis the Current Distribution Factor, fig. llc the Grating Factor, and the 
a 

diagram obtained from the polar products is shown in fig. 1ld. This product has a maximum 
value of 0-6, at an angle of approximately 55°. If the Grating Factor in this plane is denoted 
by G (¢), the R.M.S. field in the plane containing the aerials is 

60 ay 
My = — Io x F x f(g) x G (g) 

where F and f {g) are the Form and Current Distribution Factors as before. It will be seen 
later that if the co-ordinates of the point P are r, 6, », the Grating Factor becomes 

G (6, p) = 2 cos (F cos @ cos ey 

Three dimensional) polar diagram 

21. We have now shown how to obtain the polar diagrams for a pair of spaced aerials in the 
equatorial plane and in the perpendicular plane containing the aerials. While it is possible to 
calculate the polar diagram of any combination of aerials in all directions in space, the process 
becomes very tedious when more than two or three aerials are involved. The solid polar diagram 
may however be obtained by combining the diagrams for the equatorial plane and that containing 

: A 
the aeriais. The process will be illustrated by taking the two parallel dipoles, spaced 5 apart 

in free space as before (fig. 11a) and carrying equal, syn-phased currents. The R.M°S. field 
strength at an angle » with respect to the equatorial plane is proportional to the Current 

cos G sin 9) 
. / 

Distribution Factor f (gy); in this particular case f (g} = os po and has alréady been 

plotted in fig. 6. If this diagram is rotated about the axis 1,2, fig. 11a, the resulting solid figure 

(when multiplied by ° I,) gives the three-dimensional diagram of a single dipole. The 

combination of two such dipoles introduces.a Grating Factor which has been shown to be 

2 cos (= cos @) in the equatorial plane and 2 cos (= cos ) in the plane containing the aerials.
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The Grating Factor is plotted in fig. 11c ; if it is rotated about the axis 3, 4, the result is another 
solid figure. The polar radii of the latter, for any direction in space, gives a factor by which 

the quantity ° I f(y) must be multiplied, in order to give the R.MLS. field at any particular 

point. The radius O X in fig. 11b is equal to unity, and the radius O Y in fig. 11c is equal to 
two units. Thus, in the equatorial plane, the field strength in a direction perpendicular to the 
line upon which the dipoles are situated is twice that of a single dipole. 

~— L ff hai F | 

> 5 a hae 

4g) Sphere with parallels corresponding lo Sum of G(¥) and f(¥)1n db 
Pe eanng actor G (7) in db 9 €) Sum (7) and f(F) in 

(b) Sphere with parallels corresponding fo (2) Contour lines derived from (c) 
C.D factor f(¥) in db 

Fic. 12, Crap. XV.—Gain contours on spherical surface.
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22, Instead of in units of length, the radii may be expressed in decibels above or below unity. . 
The field in any direction is then given, in decibels above or below the equatorial field of a single 
dipole, merely by adding the decibels corresponding to the respective radii of figs. 11b and ~ 
llc. If we take a spherical surface and mark off a number of equal zones parallel to the equatorial 
plane, each of the boundary lines between adjacent zones may be marked to show the number 
of decibels below the field strength in the equatorial plane as in fig. 12b, the figures being derived 
from the Current Distribution Factor. Similarly, if we draw a number of equal zones in a plane 
perpendicular to the equatorial plane and to the plane containing the aerials, the boundary lines 
between these zones may also be marked in decibels above or below unity as in fig. 12a, the 
figures being obtained from the Grating Factor. At the points of intersection of any two lines, 
the field strength is above or below the equatorial field of a single aerial by the sum of the decibels 
appropriate to the two intersecting lines. One quadrant of a spherical surface, with both sets 
of zones superimposed, is shown in fig. 12c. It must be particularly noted that although the 
boundary lines in fig..12b correspond to parallels of latitude, the boundary lines of fig. 12a 
do not pass through the pole and are not analogous to meridians of longitude. 

23. If now we insert, at the intersection of all boundary lines in the spherical surface, a 
number equal to the algebraic sum of the decibels appertaining to the two intersecting lines, we 
obtain the gain or loss in decibels compared with the standard at different points on the sphere. 
These figures have been inserted in fig. 12c. By joining all points of equal gain, we obtain a 
field'strength contour diagram as in fig. 12d. A close examination of this figure shows that in 
each quadrant of the surface there are two maxima. One, corresponding to the main lobe, 
is 6 db. above the standard while the other is at an elevation of about 55°, in the plane containing 
the aerials, and its maximum is about 4 db. below the standard. This lobe has already been found 
to exist (paragraph 20). From this date we may make a solid model of the polar diagram in 
plasticine, as shown in fig. 13. To do this, the gain in db. above or below the standard must 

be converted back to absolute field strength. 

Field strength map—the sinusoidal projection 

24. When the principles involved in the production of the solid diagram are thoroughly 
appreciated, it will be found easy to construct a map showing the gain or loss in different directions. 
We may consider the aerial array to be situated at the centre ofa sphere and to illuminate 

Fic. 13, Cuarp. XV.—Solid polar diagram—parallel dipoles in free space.
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different regions with greater or less intensity. The delineation of a spherical surface upon a 
plane is most familiar in the form of Mercator’s projection of the earth. This projection is 
unsuitable for general use in aerial array theory because the high latitudes cannot be shown 
with accuracy, and it may be necessary to show the field strength vertically over the aerial. 
A suitable projection is that known as sinusoidal, in which the length of a parallel 
of latitude is proportional to the cosine of the latitude. This is shown in fig. 14. 
In the original drawing, the length of one quadrant of a parallel of latitude in the 
equatorial plane, i.e. latitude 0°, is 9 inches. The length of the corresponding quadrant in 
latitude 10° is 9 cos 10° = 8-85 inches, in latitude 20° is 8-45 inches and so on. The meridian 
corresponding to longitude 0° (with the convention of fig. 10) is a line through the points given 
above and is a cosine curve. Longitudes 10°, 20°, etc., are also cosine curves obtained by the 
division of each 90° into nine equal parts. Once the sinusoidal graticule has been prepared, the 
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Fic. 14, CHap. XV.—Gain contours shown on sinusoidal projection, 

parallels of latitude may be allotted the appropriate Current Distribution Factors (in decibels) 
and the zones perpendicular to these may be inserted by freehand drawing with sufficient 
accuracy for most purposes. In fig. 14 these are denoted by chain-dotted lines. The latter are 
allotted their appropriate values of Grating Factor (in decibels). The total gain is then inserted 
at the intersecting points, and the gain contours drawn. Alternatively, the gain in decibels may 
be reconverted to absolute field strength. There is of course no objection to working in absolute 
field strength from the beginning, but this would necessitate finding the product of two numbers 
for each intersecting point. 

Use of vector algebra 

25, When it is necessary to calculate the field at a point P in space, having the co-ordinates 
r, 8, p, the method now to be described will be found more convenient for algebraic purposes 
than the purely trigonometric methods previously adopted. Instead of considering the sinusoidal 
current as the product of a constant, 1.e. the amplitude 2%, and a trigonometrical function of 
time, €.g. cos wt, it is considered as the product of a vector I and a vector operator e”, Now 
eo = cos wt + j sin wt so that Te™ = I cos wt + j I stm wt. Since in operations involving 
complex quantities of this kind, the real and imaginary parts are entirely independent, we may
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deal with a current i == J cos wt by saying ‘‘let 1 be the real part of I ei” The magnitude 
of the vector I is of course equal to the amplitude .? of the current, in fact I may be regarded as 
the product of the scalar ¥ and a unit vector. In practice, it is usual to write merely “let 

i=] et ” the real part only of the final result being taken. For example, consider the field 

due toa dipole in free space, carrying a loop current t) = Jo cos wt. Let this current be - 

Ihe J of Then the field y, at the point P = 7, ¢, will be . 

60 23 
1 = 5 £(0) Ioc0s (ot + 5 — Fr) = .. .. (14a) 

in the notation of previous paragraphs. Inthe present notation, 

2% 20 =~ —jor 

vy =~ fo) a ea 73 . .. .. (14b) 

or more economically 

o + 4-47) 

ry =? F49) I, ¢ ( : (41c) 

-26. The advantage of this notation lies in the ease with which the fields due to two or more . 
radiators can be combined, even if they differ both in magnitude and phase. Referring to 
Chapter V, an impedance of magnitude Z = 4/R* + X? ohms may be represented both in 
magnitude and in its effect on the phase angle of a current, in any of the following ways, 

Z[0 =R+jX =Ze 

or 

Z/0=R—jX=Ze~° 

“1X 
¢= <= ( tan R 

depending upon whether the reactance is positive (inductive) or negative (capacitive). Obviously 

Z/9 = Z\-— 6 and vice versa. For example, an E.M.F. E e? acting in a circuit of Z/ 6 

ohms, will produce an instantaneous current, a 

_ Be Ee — 
'=776 = zg? 

_E jot ~—id 
=7F é 

ei —9 (real part only) 

NI
 

Sy
 
N
I
 be
 

cos (wt — 6),
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i.e. a positive reactance produces a lagging current. Similarly, an impedance Z \ @ ohms, acting 
under the same conditions, produces an instantaneous current 

\ Z 

ft +o (real part only) 

N
I
 

Ey 
N
I
 

cos (wt + 6), 

i.e. a negative reactance produces a leading current. It is also convenient to adopt a distinctive 
type of symbol for any vector operator, for use where it is unnecessary or impossible to define its 
properties completely. In the following text such operators will be denoted by lower-case (i.e. 
““small”’) Clarendon type, thus naturally associating with vector quantities. The latter are 
printed in Clarendon capitals, except where the symbol is a Greek character, when a bar superior 
is used thus 7. Vector operators are often used to denote the vector ratio between two 
quantities as follows:—Suppose we have two currents, 1, = <7, cos (wt — 6) and 

to = Jy cos (wt + y). The ratio 2 of the amplitudes is a mere number and may be denoted 
1 

by M. We also require to know their relative phase, and in the vector notation 

i,=1°"9 =1,/ot— 6 

g=1, 3+ = 1, /ot +9 

i, fpf ott? 

1, JI,/ot—é 

=?) wt +p — of + 0 
I, 

=m. 

The above method of treatment leads to the simple algebraic solution of problems which would 
otherwise be comparatively difficult and much more tedious. 

General case of two parallel radiators 

27. Referring to fig. 15, let A and B be two parallel but not necessarily identical aerials. 
Their midpoints are, however, equally spaced on either side of an origin O in the equatorial phase, 
the distance apart being d. Consider the field at the point P = 7, y, 6, where y = OP is very 
much greater than d. Let the angle XOP = «. Then XAP = XBP =a also. We may 
therefore write 

AP ry mr + 00s 

d 
BP = 73 = 1 — 5 008 @
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with negligible ertor. Now suppose the currents at the midpoints to be I’, = I, & and 
lV, =], f+ 4 If F,, Fy are the Form Factors and f, (9), fs (y), the Current Distribution 
Factors of the respective aerials with regard to their midpoints, the individual fields due to the 
two aerials will be 

Qn 

. 60 an I=G% 
m=IT Fafa lene , 

, 2a, 
IT's 60 

Ys =I Fy. fa (y) I's € 

or 

on nd 
. 60 —jy>r -—j— cos 

YI Fifs@UVse 42 * 

Qn - na 
.60 , -j 7? +j— cosa 

ve=J— Fafa) Une “e * 

Thus the combined field is 

. an _ nd 
60 ~“15" , 7 IZ esa ; +) = cosa 

yej—e ? [pwr * + Fa. fal) Vee * |... 1s ee (15) 

The above process may obviously be applied to an array consisting of any number of elements. 

Fic. 15, CHap. XV.—Notation, general case of parallel radiators. 

28. Let us now take the specific case where the aerials are identical, Then F,. f, (vy) = 
Fy. fa (9) = F. f (9). . 

For brevity we may write K = 7 F. f(g) e - " and proceed to allow for the difference in 

magnitude and phase of the currents. Let the amplitudes be %,, Ig, and J, = M Y,. The 
current in the aerial B leads on the current in the aerial A by an angle £, or I’, = M [B Y’,.
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The total field is therefore 

—j coe a +774 cova 
ye K([V,e “* +M/8UV,e 4 

— ca 6+ cosa 
=KI, & +Me 

be) 
—iz wa j(B + — cos a} =KY,e 7- [se are’ i |. oe (18) 

NowKI,e ‘is the field due to the aerial A alone and may be denoted by y,. Then 

2nd 
i+ — cos a) 

yey [i4Me , | 

_ [1+ M/o+ cos «|. 
om fh 

It now only remains to find the scalar value of the quantity enclosed in brackets. To do this let 

Bo ad cos eo y, 

M/y = Mcos y+ 7M stn y. 

The required scalar is that of 1 + M jy or1+M cos »y +7M sin y, and from Chapter V this 

is known to be +/(1 + M cos y)* + M? stn®y. This easily reduces to 4/1 + 2M cos py + M2 and 
therefore 

yey V1 42M cos »y + M?* a . - (17) 

The R.M:S. field will be ; 

ra2epQ) vit Move 8) 

29. Before proceeding further, let us examine the angle «, which is more conveniently 
expressed in terms of the angles 6, ». An examination of fig. 15 shows that the projection O Q of 
O P upon the equatorial plane is O P cos », and that the projection of O Q upon the datum line 
OX is OQcos 6. SinceOP =r, OQ =7r cos » and the projection of OP upon OX is r cos ¢ 
cos 6. The direct projection of O P upon O X is obviously O P cos « or r cos a, i.e. 

rcos a=rcos pcos 0 

COS « = cos p cos 4. 

30. We are now in a position to discuss the polar diagram. With unequal currents in the 
aerials, the only satisfactory basis of comparison with a single aerial is for equal power. From 
paragraph 14 we know that the powers radiated by the aerials A and B will be I,? R, and J,? R, 
respectively, where R, and Ry are the radiation resistances, With identical aerials R, = Ry 
and the total radiated power is 

Py = 1,5 R, + (M I,)? Ry. 7 .. . (19) 

Py 
For a given power, then, the current J, must be equal to Jf Ri + M4
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Inserting this value for the current, we have, for the R.M.S. field 

r=" rs), | ets | + M34 2M cos (8 += cos ¢ cos 6) 

(20) 
The polar diagram of a single aerial of the same kind, ‘situated at the origin O,-is given by the 
expression 

60 Py 
r= Sr. jo, | P we o. o> on oe we (21) 

and is a circle about the origin. The ratio of the field produced by the two aerials, to that pro- 
duced by a single aerial radiating an equal power, is 

; 1+ M24 2M cos (p+ cos @ cos 8) 

G (9, 6) = 1+ Mm : 

31. From this expression it is possible to calculate diagrams similar to those of fig. 8, for any 
value of M/ 8 and at any angle ¢ with respect to the equatorial plane. It is obviously impossible 
to portray all the possibilities here ; equatorial plane diagrams corresponding with fig. 8 are 
derived by putting M = 1, p = O, and letting f take any required value. With these substitutions 

Vf 2+ Bees (6 4 22 oo 0) 

Vf2 

= /1 + cosy. 

G (6) = 

By trigonometry 1 -++ cosy = 2 cos? 5 so that 

G (é) = V2 cos 5 

= 4/2 cos ( + x cos a). 

This expression is the same as that developed by a different method in paragraph 17 except that 
the factor /2 appears instead of 2. This is because we have obtained the Grating Factor for 
equal power in single aerial and array respectively, whereas in paragraph 17 the power in the 
array was four times that in the single aerial. 

Co-linear dipoles 

32. Instead of being placed parallel to each other, single wire radiators, particularly A 

dipoles, are sometimes placed end to end as shown in fig. 16, and are then said to be co-linear, 
The polar diagram of a simple array consisting of two co-linear dipoles can be found as follows. 
In fig. 16 let all measurements be made from an origin O lying between the two dipoles and on 
their common axis, and let their current loops be separated by a distance d. For simplicity let
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the loop current in each dipole be I 2! oF Then at a point P having the co-ordinates r, p, the 
field due to the aerial A will be 

2n 60 (io + $~ Fr) 
m= — fle) Le aoa re .. (22a) 

in 
60 (i +3 - Fr) : 

ya fig) TeX. 8 98, eee eee (2b) 
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Fic. 16, Cap. XV.—Co-linear dipoles. 

These expressions are of the same form as in the case of parallel dipoles, and the total R.M.S. 
field strength is easily found to be 

r 

74 os — 574 cos 
rm Big) 1 fe? "4s IF ‘ 

r 

= 2 fle) Ix 2c0s( cos v) 

LIfe) Gl), oe ee) 

hence the field strength is the product of < i and two factors which are obtainable from figs. 6 

and 8 respectively. With respect to G(), given by the latter, only columns 5 and above are 
applicable for obvious reasons, and due regard must be paid to the direction from which 9 is 
measured. From physical considerations it is obvious that the dipoles radiate most strongly in a 
direction perpendicular to their common axis and this axis is a horizontal line in the diagrams of 
fig. 8. The polar diagrams of arrays consisting of combinations of more than two co-linear dipoles
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can be found by the methods explained with reference to parallel dipoles. Fig. 17 shows the 
product f(y) G(g) for all numbers up to 8 co-linear dipoles. This figure has an important bearing 
on the radiation from arrays of horizontal dipoles. 

Reflector aerial 
33. Hitherto, in considering the radiation from two parallel aerials, we have ignored the 

effect of one aerial upon the other. It is obvious that when both are supplied with energy each 
will receive energy from the other. Of the received energy, a portion is converted into 
heat and the remainder radiated into space. Now let us consider two parallel dipoles, A and B, 

7 apart in free space, and consider their radiation in the equatorial plane, when A is supplied 

with a current 7 = <%, cos wt, and Bis unenergized. Then the field due to the aerial A will induce 
an E.M.F. in B, and consequently an oscillatory current of the same frequency. This“ induction ”’ 
is really caused by both the induction and the radiation fields of A, but for the present we shall 
neglect the former. The magnitude 2%, of the induced current in B, under these conditions, 
will be equal to that of the current in A, but 9%, will lead on 2, by 90°. The aerials A and B 
therefore radiate an equal amount of energy per second, and the field at any point can be 
calculated as in previous paragraphs, putting the angle f equal to 90° ; the polar diagram in the 
equatorial plane is given by fig. 8,C 3. The effect in the plane containing the aerials is somewhat 
similar, the only modification being due to the Current Distribution Factor. For comparison 
with fig. 17, fig. 18 gives the polar diagram in this plane of co-linear dipoles with reflectors, 
calculated on the above assumptions. 

34. The exact manner in which a reflector aerial will function depends upon three factors ; 
first, its distance from the energized aerial ; second, the ratio of its induced current to that in the 
energized aerial; third, whether it is reactive or. non-reactive, i.e. tuned or untuned to the 
frequency of the energized aerial. The second factor is obviously not independent of the third. 
Reference to fig. 8 shows that if the currents in the energized and reflector aerials are equal, the 
polar diagram is more or less uni-directional whenever the phase difference between the two 

currents is greater than 0° and less than 180°, provided that the spacing is less than i Particular 

attention is directed to the diagrams B 2, B3, B4, C2, C3, C4, D2, D3, D 4, of fig. 8, which 
show the theoretical possibilities which may arise. The effect of the induction field cannot be 
entirely ignored, and will receive further consideration. 

Effect of the ground 

35. In practice, the field produced at a given point by a transmitting aerial is always affected 
by the presence of the earth’s surface, but a complete treatment allowing for the curvature of the 
earth, and its finite conductivity and permittivity, is extremely complex. For many purposes, 
however, the earth may be considered as a flat, perfectly conductive surface, and this simplification 
is of great help in visualizing the nature of the effect. A perfectly conducting earth would act asa 
perfect reflector of electro-magnetic’ waves, and a flat earth as a plane reflector. If then we 
consider the earth’s surface in the immediate vicinity of the aerial'to be both perfectly conductive 
and plane, we may treat certain problems by a method analogous to that used in geometrical 
optics, i.e. by supposing the reflector to give a virtual image of the actual radiator. The virtual 
image is defined as a point from which rays appear to diverge after reflection, although no rays 
actually pass through the point. This conception is illustrated in fig. 19a which shows a hertzian 
doublet A B situated above a perfectly reflecting earth. At the instant depicted, the current is 
flowing from A to B, and consequently a positive charge is accumulating at B. 

36. Now take a point B’ situated at a distance OB’ = OB on the other side of the reflecting 
surface, so that B O B’ is straight and perpendicular to the surface. B’ is then the geometrical 
virtual image of B. Similarly, we may locate the geometrical virtual image A’ of the point A, 
Now considering B to be a small sphere, it must possess capacitance with respect to the perfectly 
conducting surface and if it carries a positive charge, its electrostatic field would ke distributed 
somewhat as shown in fig. 19b.. The field due to a similar charge of opposite polarity, situated 
at the point B’, is also shown, and it is seen, in conjunction with fig. 19a, that a positive charge
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at B, above a perfect reflector, will have the same field as would be set up if the reflecting surface 
were removed and an equal and opposite charge placed at the point B’. Similar considerations 
apply to the points A and A’ and therefore, when a current is flowing from A to B, an equal 
current must be considered to flow from B’ to A’. The field strength at any point above the 
reflector is found by algebraic addition of the fields due to the-aerial itself and to its virtual image, 
with due regard to the direction of current in the latter, as determined by the above considerations. 

Fig. 19c shows the distribution of current in a vertical 44 aerial, and the current in a horizontal 

dipole is shown in fig. 19d together with those of the images. In certain circumstances the image 
theorem lends itself to comparatively simple application, and it will now be applied to find the 
radiation characteristics of the horizontal dipole. 

Horizontal dipole 
37. For purposes of notation, the dipole is shown in figs. 20a and 20b. We shall consider 

the vertical polar diagram in the plane of the latter figure. By the preceding paragraph the image 
A’ B’ of the dipole A B is as shown, and therefore we require to find the polar diagram of two 
parallel dipoles, d = 2/ apart, carrying currents in phase opposition. If y, is the field due to the 
aerial at the point P, and yx the field due to the image, the total field is y = y, -+ yg where 

n 2a... 
60 J) w+ 5 —- — (1 —A sing) 

6, ,’L an | te een (24a) va 

. nm 2n . 2n . , 24 . 
60, j(#45-2,) ig Asin p —i 7 Asing . 

yo 7 E€ é —t 

na 2x 
60 jj ot+.— — (rt+hsin ¢) 

Te [ 4 | (24b) 

2. - an . 
ithsing 2 j hsin p 

Now (, a —e ; = 27 sin (A sin °) 

ny Or FOF) 5 9 in (Fh sin) .. .. {24c) 

“I
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The R.M.S. field being 

r= 21x 2sin( asin) 7 7 ve .. ee (25) 

The factor 2 si (72 kh sin >) may be called the Vertical Distribution Factor and denoted by 

D(y) ; it is obviously analogous to the Grating Factor previously used in the case of aerials in 
free space, the change from “ cosine” to ‘sine’ being due merely to the choice of a different 
datum. The Vertical Distribution Factor is in fact given by the series of polar diagrams in fig. 8, 
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Fic. 20, Cuar. %V —Notation, horizontal dipole 

ling E, except that they must be turned through 90°. In the first few diagrams. one half of the 
limiting circle has been shaded to tepresent the ground, so serving as a reminder to perform the 
necessary rotation. The relation @ = 2h musi. not be forgotten, e.g ‘he Giagram E 18, d == 4/, 
gives D (») for a height of 24. 

Effect of height of dipole 

38. Several additional verticai polar diagrams are given in fig. 21 (Sheets | and 2), and trorr 
these it is apparent that no matter what the height may be, there is no radiation along the suriace 
of the earth, even if the iatter is perfectiy conductive. It follows that with a horizonta! aerial 
no communication can be performed by means of a true ground ray. I! his jess than @-S) the 
greater part of the energy is radiated vertically ; if #1s increased to abour 0-42, the diagram shows 
signs of breaking inte two lobes. This kind 9% dia agram is very suitabie ior « marker beacon 1 
a blind approach system, but for very littie cisc. As #18 Increased to 0:54 the two lobes becom: 
fully developed, the vertical radiation: falls io zero and the maximum field being developed a’ 
an angle of 30° to the horizontal 4 lurther increase of peene leads to the development o° 

2 
a) 5 ’ . 

4, <4, 24, etc., the number o} additional lobes. and whenever / is an integral multiple of 2 B84 53% 

e 4h 5 cu 5 34 \ . * 
lobes is equal to —, thus a height of —/ pives five lobes, and so on. It foliows that one lobe is 

2 
a 

vertical whenever A is an odd muitiple of - and that no vertical radiation occurs when # is ap 
a 

even multiple of 7 The angles at which successive maxima occur can be determined oniy
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approximately from the polar diagrams, but are given to a higher degree of accuracy in fig. 22. 
The practical use of figs. 21 and 22 is to determine the most effective type of aerial for any 
particular service. As already stated, heights less than about 0-34 are useless except for marker 

beacons and the like, If hig increased to say 0-45 or 0-5, the aerial may be suitable for short- 

distance transmission, e.g. up to about 500 miles, for a projection angle of 45° will give a signal 
at about that distance by reflection from the F region, assuming the height of the latter to be 
about 200 miles. For distances of 1,000 miles or more, a projection angle of about 12° to 15° is 
required ; from fig. 21 it is seen that to get maximum radiation at this angle a height of from 5 } 

4 
250 to 300 feet. 

} to =A is necessary. Thus if 4 = 80 metres, the radiator must be raised to a height of some 
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Fic, 22, Cuap. XV.—Horizontal dipole : angles at which field maxima occur. 

39. The projection angle of 12° to 15° is suggested for transmission via the ionosphere, but 
where direct-ray communication is necessary, as in ground to air service, a much greater height 
would be desirable. An aircraft at 10,000 feet and a range of 50 miles is only about 2° above the 
earth, and if the maximum of the first lobe is to be brought down to 2°, the height of the aerial 
must be about 74. This is of course quite impracticable with a wavelength of 80 metres, and is 
not very easily or cheaply achieved with so short a wavelength as 3 metres. Nevertheless, it 
must be regarded as axiomatic that for efficient ground to air communication on high and very
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high frequencies, the highest possible masts must be used. Even at comparatively short ranges, 
the energy received at ground level will generally arrive by reflection from the ionosphere, and 
the signal will generally be subject to severe fading. When dealing with low angle radiation, 
ie. up to a few degrees, the height 4, which gives the first maximum at an angle ¢, radians, is 
found thus, , 

A 
h y= 4 

A 
h=—.. 

4g, 

If , is in degrees, 

14-32 
A= . 

v1 

Vertical aerials 
40. The vertical polar diagrams of vertical aerials situated on or near the surface of a perfectly 

conducting earth are obtained by summing the effects of all the elementary hertzian doublets 
which comprise the aerial, together with those constituting its image. The elevation of the 
centre point of the aerial above the ground level is of considerable importance ; examples of this, 

in the case of a ; dipole, are given qualitatively in Chapter VII. A single example will be given 

nf 

tj. 
a“ a 
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anc) 
Fic. 23, Cuap. XV.—Calculation of vertical polar diagram of aA aerial on perfect earth. 

to illustrate the method of calculation. Referring to fig. 23a which shows a , aerial with its 

lower end at ground level, together with the assumed current distribution in the aerial and its 

image, it is seen that the length of wire conveniently divides into three ; sections, A, B, C, each 

of which may be considered to give rise to a field at the point P. The notation is given in the 
diagram. The section C gives rise to a field 

3 € + ;- * r) yo = f(g) Te ee 88)
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Note that f() is the appropriate Current Distribution Factor and geometrically is identical with 
fig. 6, although the angle (¢) is in the present example measured from the ground. The distance 

of the point P from the current loop of section A is (r — ; sin e), and from the current loop of 

. A. . . . . 
section B (> -+- 5 Sim °). The currents in these sections are in anti-phase to that in section C. The 

fields due to these sections are therefore 

~ fe) Te («43 -F) ¥a 

= — Mgr d Latin F (mdm) Lea (27a) 

nx Qn r A 
fj} ot +> ——[( r+ 5 sin 

n= — Sard ( ed teas. (27) 

and the total field is 

mn 2n 
j{o+o~—sr . _ 

pant mtn Seite 204 hr -(etiine 4 evinane) | 7 (27) 

the R.M.S. field being 

r= = fle) I [3 _ (tier 4 cree) 

= FF (0) 1 [1 — 20s (x sine) | ee ee (274) 

Vertical polar diagrams 

41, The above expression is easily plotted with the aid of fig. 8. Ignoring the term ° I, 

the shape of the polar diagram can be found thus. Setting aside the factor f(g) for a time, we 
have to plot [1 — 2 cos (x sin p)]. Now [2 cos (x sin ¢)] is given by fig. 8, A 9, turned through 
90°, and is shown in dotted line in fig. 23b. Before proceeding further, it is necessary to note 
that in any diagram of fig. 8 which possesses more than two lobes, the latter are alternatively 
of positive and negative sign, the lobe extending in the direction 0° being positive. In the dotted 
line diagram of fig. 23b the signs have been reversed, so that what is shown is — (2 cos {x sin @)]. 
To this, a circle of radius + 1 unit (shown in chain line) must be added, giving the result shown 
in thin solid line. The latter diagram represents [1 — 2 cos (x sin ¢)], and to obtain the polar 
diagram, it must be multiplied by the appropriate Current Distribution Factor / (9) (fig. 6) 
giving the final result shown in heavy line. Proceeding in the above manner the vertical diagrams 
for vertical aerials of various heights up to 24 have been caiculated, and are shown in fig. 24. It 
will be observed that all lobes have a common tangent, and further that if the number of quarter 
wavelengths in the actual aerial is odd, there is always some radiation along the ground, bearing 
in mind that the latter is assumed to be a perfect conductor. The effect of the finite conductivity 
will be dealt with later.
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Mutual impedance between adjacent radiators 
42. Although the elementary theory indicates that certain results will be obtained when 

given conductors are of particular lengths, or spaced at a particular distance from earth or another 
conductor, it is found in practice that optimum results are often obtained with slightly different 
dimensions. In many cases, this is due to the assumption that the mutual impedance between 
conductors, or between conductor and earth, is zero, whereas it may in fact be of the same order 
as the impedance of the conductor itself. The magnitude of the mutual impedance between two 
radiators in free space is defined as the ratio of the induced voltage at the current loop of a second 
radiator, to the loop current of the first radiator; when dealing with earthed aerials it is 
convenient to refer the mutual impedance to the base current. The sign of the mutyal impedance, 
when defined in this way, is negative. Thus, if Z,, and g,, denote the mutual impedances of 
a radiator A with respect to a radiator B, and vice versa, Vs, denotes the induced voltage in B 
due to the current in A. Let I, be the loop current in A, then 

S45 = San = — 7. 

In the following discussion the notation will be as under :-— 

I, = vector current in aerial A; R.M.S. value J, 

I, = vector current in aerial B; R.M.S. value 7, 

V, = vector voltage at terminals of aerial A; R.M.S, value V, 

Vz = vector voltage at terminals of aerial B; R.M.S. value Vy 

Z,2 J/R2+ X2= magnitude of self-impedance of aerial A 

Xs 

Ry 

z= R, + j7X, = 2, / 9, 

Zy = +/Rg* + Xy* = magnitude of self-impedance of aerial B 

On = tan} 

&. 
63 = tan~} Re 

ty = Ry + jXp = Zy [Oy 
fp = phase difference between I, and I, 

Zy = Ry? + Xy? = magnitude of mutual impedance between 
radiators A and B 

x — -12.é Oy = tan Ry 

ty = Ry + 7Xu = Ly [Ou 

R,’ = sum of self and mutual resistance of aerial A - 

a Il sum of self and mutual reactance of aerial A 

y 
L
a
n
 sum of self and mutual resistance of aerial B 

X,’ = sum of self and mutual reactance of aerial B 

ay’ = Ry’ + 9X, 
Zp = Ry’ + jXy’.
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43. The evaluation of the mutual impedance between two radiators is very tedious and 
there are very few data available. For identical radiators, the curves of figs. 25 and 26 may be 

used. These diagrams give the magnitude Z, and phase angle 6, for various values of ‘ The 

first-named diagram is applicable to vertical aerials located directly above a perfectly conductive 
earth, the mutual impedance being referred to the current at the base of the aerial in all cases 

except for the pacrial which is referred to the loop current as usual. Fig. 26a gives Z, and Oy 

for parallel es dipoles in free space. It may be noted that the above curves give the self-impedance 

of the aerial also, ie. Z, [6, = Zy / Oy when £ <=. Fig. 26b may be used for co-linear dipoles. 

In this case the ordinate, Zy or 6y, is plotted against the separation of the adjacent ends. The 
impedance Zy / Oy is easily resolved into its resistive and reactive components by methods 
previously explained, as in the following. 

Example 

Find the mutual impedance and reactance between two parallel ; dipoles A, B, A apart in 

free space. 

From fig. 26a, for = 0:5" 

Zu [0 = 33 | — 117. 
, Ry = 33 cos 117 = — 33 cos 63 = — 15 ohms 

Xy = — 33 stn 117 — 33 stn 63 — 29-4 ohms. 

From the above example it follows that if the members of such an array are energized by equal, 
syn-phased currents, the impedance of each is z-+ gy = 73:3 + 742-5 — (15 +7 29-4) or 
58-3 + 713-1 ohms. The reactance of each member will be annulled by suitable tuning arrange- 
ments, while the whole array will have a radiation resistance of 116-6 ohms. 

44, Now suppose the two parallel aerials to be energized by voltages V,, Vz,in such a manner 
that I, = mI, = M {6 1,. By Kirchoff’s laws, 

VY=Lat+hy Pa oe wo oe oa oe e (28a) 

Va=ItetInZs 6. te ee eee ene £28) 

where %, may or may not be equal toy,. Substituting for I, in equation (28a) 

V. = L, {R, + 9X, + m fy} 

=I, {R, + 9X, + MZy | + B} 

wg,’ = R, + 9X, + MZ, cos (04 + 6) 

+ jMZy, sin (Ou + 8), 

R,! = Ry + MZ, cos (0% + B) .. .. a - .. (29a) 

X,’ =X, 4+ MZy sin (04 + 8). . ve .. .. .. {29b)} 

or 

i.e.
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Similarly 

Ry! = Ri + 78 008 Ou — B) . ee ae 7 +. (29c) 

= Xy + sin (Oy — §), +e .. e . .. (29d) 

It is now seen that the radiation resistances of the two aerials are only equal when M = land f 
is either 0° or 180°. It is of interest to note that in any other circumstances the reactances are also 
unequal, so that the tuning reactances of the two aerials will differ. 

Effect upon power distribution 

45. As an example of the effects of the value of m, let us consider two + aerials, A and B, ; 

apart upon a perfect earth, and energized with currents I,, J, where Jz = 0-8 I, /90°. The 
self impedance of each aerial will be 36-6 + 21-5 ohms. From fig. 25, z, = 25 / — 36 ohms. 

Then 
Ry’ = Ry + MZ, cos (90 — 36) 

= 36-6 + 0°8 x 25 cos 54 

= 36:6 +0-8 x 25 x 0-588 

= 36:6 + 11-76 

= 48. 36 ohms 

R, = RB, + GE cos (— 90 — 36) 

= 36-6 + x cos (— 126) 

25 

= 36-6 — 18-4 

= 17-2:ohms. 

Let us now find how these aerials would share a power of 500 watts. 

D2 Ri! + Dy? Rg’ = 500 

I? (48-36 + -8? x 17-2) = 500 

T,? x 59-36 = 500 

t, = faa 

= 2-9 amperes 

IT, = 0-8/1, = 2-32 amperes 

Pi= 1,2 R,! = 2:98 x 48-36 

= 405 watts 

Py = 1,? Ry’ = 2-32? & 17-2 

= 93 watts 

P,, = 498 watts,
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the slight discrepancy being due to arithmetical approximations. In order to energize the aerials 
in the manner specified, the applied voltages V,, V, must differ both in phase and magnitude. 

The vector ratio Va j is easily found 
B 

V,=a,+ mI, zy 

V,=-L%+mI, 2, 

J Va 2, +m Zy 

Va %+mZ, (80) 

This equation determines the nature of the network which must separate the feeding points of A 
and B, if they are to be supplied from the same feeder line. 

Effect upon polar diagram 
46. It is also of importance to appreciate the extent to which the polar diagrams of an 

array are affected hy the mutual impedance. Taking the two aerials A and B of the previous 
paragraph, but separated by an unspecified distance d, the total power radiated will be 
TR,’ + Ty? Ry’. 

Putting Iz = M [B TI, as before, the total power radiated is 

P, = 1,7 (R, + M®R, + 2MRy cos 8). 

Thus, for a given power P, the current in A is 

Py iL= R 

1 Ja(vriw savas 
A 

In paragraph 29 the polar diagram of two parallel radiators is derived on the assumption that 
Ry = 0. Jt is then shown that at any point P having the co-ordinates r, 0, , the R.M.S. 
field is . 

r= @ rp] gz RT ja] 1+ M2 + 2M cos (+ 2a cos cos 2) 

. (31) 

Py . . a 
where J Ra + i) is the current in aerial A. 

To allow for the mutual impedance, then, we have only to substitute the value of [, as modified 
by the mutual resistance Ry, giving 

lee - M? +- 9M cos (p + 278 cos @ cos 0) | 

= 2 PF. f@) AF 

(1 + Mt + aM BY cos 2) 

. (32) 

The horizontal polar diagram is obtained by putting g = 0, cosy = 1. The field at ground 
level] is then 

P ond ; 

60 t] 1 + M2+ 2M cos| p + ——- cos é 
_ F A 

; R 
R(1 + M2 + 2M sp cos A) 

. (33)
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CHAPTER XV.—PARAS. 47-48 

If the same power were supplied to the aerial A alone, B being entirely removed, the polar diagram 
would be a circle, the field strength being given by 

5 [Pe 
A 

from paragraph 14. The ratio of I, to Iya is 

r 14 Mt 4 2M cos(p + 72d cos 0) 

_—o = : tees .. (34) 

Toa 1+ M2 + 2M 2H cos 
A 

47. From this ratio it is easy to plot polar diagrams corresponding to those of fig. 8, but it is 
obviously impossible to portray all the possibilities. For the particular case when M = 1, 
Ry ~ 0, we have a further simplification 

1+ cos (@ + 2d cos ) 

Poa) 1 4 Bu cos g 

A 

g nd ) 
4/2 COS (5 ++ Z 60s 6 

= Ra 

ft + Be cos 6 

The numerator of th’s expression obviously gives the ratio Toit Ry = 0, as in paragraph 31, 
Poa 

. . . R . 
Since neither a nor cos 8B can exceed unity, the product a cos 8 cannot exceed unity and may 

A A 

be very much less. Thus, with equal currents in both aerials, the shape of the polar diagram is 
very little affected by the mutual impedance, so that fig. 8 may be used for practical purposes 
even though the mutual! impedance was not taken into account in calculating the diagrams. 

Effect of Z,, upon current in radiating members 

48. (i) In an array consisting of more than two radiating members, the mutual impedance 
between the radiators may exercise a considerable influence upon the radiation characteristics. 
As an Hustration the array shown in fig. 27 will be considered oyety Here A, B, and C are 

parallel 3 * serials on a perfectly conductive earth, and are spaced 5 * apart. Each aerial has a self- 

impedance 2 = R-+ 7X ohms; tuning reactances X,, Xq, X3, may or may not be included. 
Let 4 = 2+ 98), 2 = 2+ 9X5, 2, =2-+ 5X5. Let us first assume that the tuning reactances 
are absent, and that t the aerials are fed from a common source of voltage V. We then have 

V = al, + aly + 2]e - - ve as .. ae (35a) 

V = 2,), +2, + wl, .. a .. .. a .. {(35b) 

Ve=adytulp tel 0.0 0. ue ee ee we (850)
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A 

z+ 7+ 24 

Z,7Z + 54, Z,°Z+ jXp Z5°Z +X, 
Fic. 27, Cuap. XV.--Notation—three parallel aerials. 

From the symmetry of the arrangement it is obvious that I, = k, although I,is not necessarily 
equal toI,. Let I, = mlI,. Then 

V=(+23+mz,)L 

V = (22> + mz) I, 

Z+ Zo + Mp == IZp + mz 

Z + Lg — 2p. 

Z — Zp (36) and m = 

This ratio is easily evaluated. From fig. 25 the various impedances are found to be (to the nearest 
integers) 

z= 100 + 758 

Zo = 10 + 732 

» am — 100 +758 + 10 + 932 + 48 + 794 
os 100 + 758 + 24 + 747 

¢ 158 + 7184 
“~ 124 + 7105 

== 1:43 + 70-277 

== 1:46 /11° approximately. 

Thus the current in the centre aerial is nearly 50 per cent. greater than in the outer ones and is 
slightly out of phase. For practical purposes the horizontal polar diagram may be obtained by 
adding a circle of radius 1-46 units to diagram A 9 of fig. 8, taking the vertical lobes to be of 
positive and the horizontal lobes to be of negative sign, and ignoring the effect of the slight 
phase difference.
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(ii) Next we shall suppose the aerials to be individually resonant, so that 2, == Bg == Zp = 
R = 100 ohms, From the previous example it is easily seen that in this case 

_ Rik —%k 
R — Zp» 

_ 100 + 10 + j32 + 48 + 794 
~~ 100 + 24 + 447 

158 + 7126 
124 + 947 

= 1-49 /18° 

m 

I 

Thus the current in the centre aerial is still nearly fifty per cent. greater than in the outer ones, 
and is out of phase by a greater angle than before. 

49. Finally, let us find the conditions under which m = 1 /0°, the current in each aerial to 
be in phase with its supply voltage. To achieve this it will be necessary to feed the centre aerial in 
such a manner that V, is not equal to V,. 

V, = 2,1, + 2pIg + Zoo _ _ a . .. (37a) 

Va = Zl, + Zely -+ Zple. .. 7 a .. es (37b) 

But L=L=1L; 

Va = (2+ 9X, + Zp + Ze) Lk oe . a a .. (38a) 

Vz = (2m, + 2 -+ 7X.) Ih, . a .. .. .. (38b) 
1.€. 

Ze = R+jX + 9X, + Re +jXp + Ra tjXe 

Ru = R+ Re+ Ry 

= 100 — 24 4-10 

= 86 ohms 

AX = X4X,4+ Xp + Xg=0 

Ay= — (X + Xp + XQ) 

= — (58 — 47 + 32) 

= — 43 ohms 

Zap = 2Rp + 27Xp + R4+jX + 4X, 

Ry’ = R+2R, 

= 100 — 48 

== 52 ohms. 

xX; =X+X,+ 2X, =0 

X= — (X + 2X>) 

= — (58 — 94) 

= 36 ohms. 

Thus in order to tune the array correctly, it is necessary to insert capacitive reactances in the 
outer members and an inductive reactance in the centre member. In practice this tuning may be 
achieved by suitable adjustment of the length of the radiator, or by the addition of a susceptance 
in parallel with the aerial instead of a series reactance. Such susceptances may take the form of



CHAPTER XV.--PARA. 50 

short lengths of non-radiating feeder line. It is obviously necessary to supply the outer aerials at 
a higher voltage than the centre one, i.e. Vy == Vo = 1°65 V3. Since the aerials are carrying 
equal currents, we may refer to the radiation resistance of the whole aerial without ambiguity. 
This is equal to R,’ + Ry’ + Ry’ = 208 ohms, the average resistance per radiator being 69 ohms. 
It is found that as the number of parallel syn-phased dipoles is increased, the average resistance 
per aerial falls slightly, approaching about 56 ohms for an infinite number of aerials. On the other 

hand, if 3 aerials, spaced ‘apart, are fed with equal currents having a progressive phase difference 

of 180°, in order to obtain an “ end-fire ” diagram, a repetition of the above calculation gives the 
total radiation resistance of these aerials as 416 ohms, an average of 139 ohms per radiator. 

Effect of Z, between radiator and reflector 

50. Let us now consider.the action of a reflector aerial more fully than in paragraphs 33 and 
34. In the notation previously used let A and B be two parallel vertical aerials separated by a 
distance d, A being energized by the application of an oscillatory voltage V, and B being un- 
energized. Let their self-impedance operators be z,, Z, and their mutual impedance operator Zy. 
By Kirchoff’s law 

V =2,1, + z1, o- ee es a a oe. (39a) 

O = ay, + Zaly. ae .e .. .. .. .. (39b) 

The current in the reflector B is 

— _ 2 I, — Zn I, 

= ml,. 

Zy Zy | Oy 

Thus ee 

" Us Zs 9 
LZ a 

= Zz, | m+ Oy — bg 

(Zu)? 
V= he _ Zn I, 

Vv yo (Zy)? 

i, ~ Ba = Ea Zs, 

. Zu)? 
= R,+ jx, — /2n+ 20y — 

“B 

. Zu)? 
=Rhy+ jx, - [26y — Op 

EB 

po _ (Zy)? _ so that R, =k, “z~ c0s (264 — O5) ws . . .. (40a) 
B 

2 

XxX,’ = x, — (Zu) Sift (264 —_ 6,). ae eu ae ee (40b) 

2s
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51. As would be expected, then, the presence of the reflector modifies both the resistance and 
the reactance of the energized aerial. The polar diagram is calculated by methods already ex- 
plained. If ,is the field strength in the horizontal plane in the direction @ when the reflector is 
absent, and J, the field in the same direction with the reflector present, for the same input power, 

r, =, of Bir }t + Mt + 2 cos (p — 7 d cos 0) 

1 + M¥+ 2M cos (8 — = d cos 6) 
=P, . oe (At) 

1—M ou cos (264 — 5) 
R, 

A study of the above results will show that it is almost if not quite impossible to fulfil the con- 
ditions required to give a horizontal polar diagram corresponding exactly with fig. 8 C 3. To 

obtain the latter diagram it is necessary to have m = 1 / > Now M = on and Z, cannot be 
B 

less than Ry. If the aerials are 5 dipoles on a perfectly conductive earth, the minimum value of 

Rg is 100 ohms. The current in the reflector aerial leads on that in the energized aerial by an 
angle 8 = 180° + 6, — 6,, and if 2, = Rg, 898 = 0. Thus the mutualimpedance should have a 
phase angle of — 90°. Reference to fig. 25 shows that 64 = — 90° when the spacing is approxi- 

1 3 
mately 0-44 and Z,y is then only 60 ohms, so that m = 0-6 / 3 instead of if 5 

52. The above position may be summarized by the statement that it is impossible simul- 
taneously to fulfil the conditions that the forward radiation shall be double that of the single 
energized aerial, and the backward radiation absolutely annulled, by the use of a single reflector 
aerial. So far as it is possible to generalize, it may be said that in the case of a single aerial with 
reflector, both tuned to the same frequency, the optimum spacing for maximum fcrward radiation 
. . A . gs 4 . . 
is approximately On and for minimum backward radiation, —. For the optimum ratio of for- 

ward to backward radiation, the separation should be about 0-284. These results are only of 
practical importance when a single energized member and a single reflector are used. When 
reflector aerials are used in conjunction with arrays consisting of several radiating members, the 

spacing is not critical, and it is found that a spacing of j is as effective as any, the reflector being 

usually slightly mistuned as explained below. In certain designs, particularly on the higher 

frequencies, a spacing of vA is sometimes adopted. 

Mistuning of reflector 

53. It is possible to obtain a near approach to the desired cardioid diagram by mistuning the 
reflector aerial, the degree of mistuning being dependent upon the spacing ; when this expedient 

is adopted the q Spacing is in most circumstances as effective as any other. For any given set of 

conditions, the horizontal polar diagram is easily calculated from the expressions given above, 
particularly since, if only the shape of the diagram is required, it is sufficient to plot the portion
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J 1+ M?+2M cos (6 — “a d cos 6). The method may be seen from the following example. 

A 
If Aand B are vertical 4 aerials, 7 apart upon a conductive earth, A only being energized, the 

radiation resistance of each wire will be 73 ohms and the dead-loss resistance may be only 2 ohms, 
so that the total resistance of each is 75 ohms. It is not suggested that the dead-loss resistance 
can be kept within so low a figure in practice, but it will be seen that unless the dead-loss resistance 
is very low the desired diagram cannot be obtained. 

54, ForS= 0-25, fig. 25 gives Zy / 6 as 80 /—35. Suppose the reflector to be mistuned, 
having a positive, i.e. (inductive) reactance, its impedance being Z, / 45°. 

Ry 75 
Then Z3= cos 8 = 9907 = 106 ohms 

Lu 80 
and M = 2, = 106 = 0-755 

M‘*-= 0-57 

The angle # by which the current J, leads on J, is given by 

B = «+ Oy — 9, = (180 — 35 — 45) degrees 

= 100° 

Substituting these values of M and @ in the expression 1 + M?-+ 2M cos (p — “a d cos 6) we 

obtain 1-57 + 1-51 cos (100 — 90 cos 6) ; when @ = 0, cos 0 = 1, (100 — 90 cos 6) = 10. 

1:51 cos 10 = 1-486 

1-57 + 1-486 = 3-056. 

Hence the field in this direction is 

r,= ra | Re, [3-056. 

Ignoring the terms 74, J zh which give the scale of the diagram 
A 

Ty = 3-056 

= 1-75. 

When 6 = 180, cos 6 = —1, (100 — 90 cos 6) = 190 

1-51 cos 190 = —1-51 cos 10 = —1-486 
1:57 — 1-486 = 0-084 

4/0-084 
= 0-29 

F180 

The field in other directions is found in the same manner and so the shape of the horizontal polar 
diagram is determined. Actually a good approximation may be found by calculating M% and Iyg9 
as above, and in addition, I,4, and the minimum field. The field I'yy is obviously
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/1 + M? + 2M cos B; in the given example this becomes 4/1+57 + 1-51 cos 100° 

= 4/1:57 — 1-51 x 00-1736 = 1-15. The minimum field obviously occurs when 

cos (sa cos a) = —1,i.e. when ¢ — “ee cos 0) = 180. Inthe present instance we have 

100 — 90 cos 8 = 180 

cos 0 = 3 

§ == 153° 

The field Py5q is equal to »/1 -- M? — 2M = 4/1-57 — 1-51 = 0-245. 

55. With regard to the scale, we have to find I’, the field which would be set up by the aerial 

A alone. This is equal to or af(y). Geometrically /(¢) is identical with fig. 6 and its magnitude 

in the horizontal plane (y = 0) is unity. Next the expression NT iO must be evaluated. From 
A 

equation 40a, 

Ry -1— 2 0 (204 — 93) Ry ZR, 
=j-—- MF cos (204 — 9). 

In the present example this becomes 

R,’ 0-755 x 80 
R, 71-3 cos (— 70 — 45) 

= 1-35 

Es — 0-74 
A 

Ry _o. 
R= 0-86. 

Finally, allowance must be made for the radiation contributed by the virtual image of the array. 
This entails the introduction of a Vertical Distribution Factor D(p) ; since the centre point of the 

A 

4 
but must be turned through 90° so that it has the value 2 along the ground (p = 0, 0 = 0). 
Thus the R.M.S. field in the direction 0 = 0, along a perfectly conductive ground will be 

2 x 0:86 x 1:75 = 3 x * Z and in the direction @ = 180, 2 x 0°86 x 0:29 = 0-465 x or. 

array is — above the earth, the appropriate factor is geometrically identical with fig. 8 A 5, 

The complete horizontal polar diagram is therefore that shown in fig. 28b. From the manner 
in which it is obtained it is obvious that if the diagram is rotated through 90° about the axis 
XX, and then multiplied by the appropriate values of f(¢~) and D() as defined above, the vertical 
polar diagram (fig. 28c) is obtained. A few points so calculated will give a sufficiently close 
approximation.



a) 

PASSO 
Z x wy y 

aananh 
Fic. 28, Cuyap, XV.—Example of calculation of polar diagrams. 

Effect of dead-loss resistance 

56. The importance of low dead-loss resistance in the reflector aerial can easily be 
appreciated. Again referring to fig. 8, which, it will be remembered, is constructed on the basis 
of equal currents in the two aerials, it is seen that if this condition is fulfilled, an approach to the 
desired unidirectional diagram is attainable even if the respective currents are not in 
quadrature. For example, compare diagrams B3, B4, D2, D3, with diagram C3. If the 
two currents are not equal, however, the attainment is much more difficult, and it is 

therefore desirable to make M approach unity’as closely as possible. Since M = ou and Zy is 
. B 

constant for any particular spacing, M can only approach unity if Z, is kept small. Even with 

zero dead-loss resistance and zero resistance, Z, is equal to the radiation resistance, e.g. for a 3 

dipole, Z, must be more than 73 ohms. This considerably narrows the range of from which a 

suitable value of Z, can be chosen.
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Influence of finite conductivity and permittivity of ground 
57. We may now briefly discuss the errors involved in the assumption that the surface of the 

earth is a perfect conductor, so far as its properties as a reflector are concerned. Since we are only 
concerned with the earth in the vicinity of the aerial, we shall consider the surface to be plane as 
before. Fresnel’s equations governing the reflection of a plane electro-magnetic wave at a plane 
surface are given in the previous chapter, in terms of the angle of incidence as defined for physical 
purposes. For the present purpose, however, it is more convenient to state them in terms of the 
ground angle as previously used in this Chapter. The ratio of the field strength on reflection, 
F;, to the incident field strength Jj, is then a complex number. Two different solutions occur 
according to the plane of polarization of the incident wave. For a wave polarized in the plane 
of incidence, i.e. vertical polarization, we have 

Ye _ iey 
oR lea Be =k, 

while if the wave is polarized perpendicularly to the plane of incidence, i.e. horizontal polarization, 

I; i 6 
= = Ky/% = Ki, * =k. Ti h / h h & kp 

In terms of the ground angle @, Fresnel’s equations become 

.20\.. 3 . 26 
(« — 7%) sino — fre — cost — 7 

, Fo 48) 
ae 

(«7 %) sino + * — cost — 5 

k, = 

J 2 . 20 . 
x — COs — JG — Sim Pp 

kn == = a. we e me oo (43) 

2 . 20 . 
fe costo — 5% + sing 

where x is the permittivity of the ground. 
o is the conductivity of the ground in E.S.U. 

@ is the ground angle, i.e. the complement of the angle of incidence. 
f is the frequency in cycles per second. 

58. The expressions k,, ky are referred to as the complex coefficients of reflection for the 
respective cases. Their moduli, K, and Ky, are always less than unity. The angle 6, or 6, must 
be added to the phase of the incident wave to obtain the phase of the reflected wave. This angle 
is always negative, and lies between 0 and — 180°. In using these equations it is most important 
to observe the conventions which have been adopted in obtaining them. These are shown 
diagrammatically in fig. 29. Taking the vertical polarization case first, Fj and I, are both 
considered to be positive in the upward direction, along the plane of the paper. In the case of 

TTT PTET OOP TOTP Z Z 

(a) P in plane of incidence (b) P perpendicular fo plane of incidence 

Fie. 29, Cuap. XV.—Conventional positive directions of electric field vector.
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horizontally polarized waves I; is considered to be positive when it is in a direction upward from 
the surface of the paper, and the positive direction of [is considered to be downward, i.e. below 
the surface of the paper. The importance of these conventions becomes apparent when the sum 
of the incident and reflected waves is to be found. 

K / 6 curves 

59. As the computation of the reflection coefficient is very tedious, curves of K,, 6, and 
Ka, 95, for the different states of polarization and for several different kinds of ground surface, 
are given in fig. 30 (Sheets 1 to 4). Once these are known the total field at a distance from an 
aerial may be found by the methods already given. For example, take a horizontal dipole operated 
at a frequency /, which is situated at a height 4 over ground for which o and x are known, and 
consider the total field at a point P at an angle ¢ to the horizon and at a distance 7 (>>) from 

the aerial. Let the aerial current be Ie“. Then, due to the aerial alone, we have at P a field 

2n 
r 

_ 60, (4 ti F ), 
¥ 

vA 

Also, due to the wave reflected at the ground, a field 

j| ot + 2—~Z + 2hsing) 
= ° ki I é€ [ 2 A ]. 

Paying due regard to the conventional positive directions of y, and yg, therefore, 

nm ln : 40 
6) i(o+ 7-2) jo —jrksing 

yp = Te a4 limes A | 
Y 

YB 

=n] 1 Ka] im a sine ae oo os ee (44) 

60. (i) By.methods already explained, the amplitude of the total field is found to be 

Pemty, [1+ (iia)t — 2h 00s (os — he sino) te (45) 

and we are not further concerned with its phase. The expression under the square root sign is 

therefore a factor by which the field strength ry, due to the aerial alone, must be multiplied, in 

order to allow for the effect of the earth. It is seen to be of the same form as that which takes 

into account the mutual impedance between an aerial and a reflector, but 6, is a function of the 

angle p instead of being constant for a given set of conditions. 

(ii) If the above calculation is repeated for the case of a vertical dipole, with due regard to 
the sign convention, the amplitude of the total field is found to be 

Frat, [i+ U6)" + 2K cos (% — 5h sino) . .. (46) 

which is of a similar form to that obtained for horizontal polarization. The quantities under the 
square root signs are the Ground Reflection Factors and may be denoted by o,(g) and ex(y) 
respectively. “Once these factors have been calculated, they may of course be applied to any 
array which in free space would radiate equally well above and below the equatorial plane, 
provided that A is taken as the height above earth of the electrical centre of the array. The 
R.MS. field at any point having co-ordinates 7, 0, p, may therefore be written 

r= 2. Ff (9). o(0). Tus
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61. Referring now to the curves showing the variation of k, with (figs. 30, Sheets 2 to 4) 
it is seen that for ground of moderately high conductivity, Ay may be of the order of 0-7 or more 
(for p = 90°), gradually increasing to unity when the radiation reaches the ground at a very small 
angle to the horizon. For very high values of o, e.g. for sea water, Ay is rarely less than +96 
(for y == 90°) and may therefore be taken as unity for practical purposes. For a surface of hard 
rock, on the other hand, Kn (for g = 90°) may be as low as 0-4 or even less. Given the values of 
x, cand f, it is not difficult to calculate the reflection coefficient for vertical incidence (i.e. p = 90°), 
as in the following example. 

Example—lf o = 10° E.S.U. x = 6, f = 10’ cycles per second, find the reflection coefficient 
for vertical incidence. 

When ¢ = 90° cos y = 0, sin op = 1 

nj 
k, = J 

_ 20 
x—4qJ— +1 

J IF 
2a 
~- = 0:2 
f 

_ V6—j0-2 —1 

/6—702 +1 

/6 — 702 =v — ja 
6 — 70:2 = v? — Aira — a? 

, v2? — a2 = 6G, 

Kn 

2ra = 0-2 

vt — Zy2q2 + of = 36 

A4y?g.2 — 0-04 

vt + Qy?o2 + of = 36-04 

vy? +4. a2 ox 4/36-04 

= 6:-0033 

(vp? +. a2) + (v2 — a2) = 12-0033 
v® = 600165 

» = 4/6:00165 
= 2:45 

and 

a? = 0-00165 

a == 0-0406 

y—ja— 1 

Kn = y—jao+l 

__ 2:45 — 1 — 7 0-0406 
~ 2-45 + 1 — 70-0406 
_ 1-45 — 70-0406 
~ 3-45 — 70-0406 

1-452 + 0-04062 
Ku = ,/ 3-45? 1 0-04062 

= 0-42 
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When an approximate value for Ky (vy = 90°) has been obtained, the approximate curve for 
other values of » may be sketched in by noting that it closely resembles one quarter of the 
negative portion of a sine curve. The error in drawing the curve in this manner is greatest at 
about 30°, but even then is probably not greater than that occasioned by our imperfect knowledge 
of the electrical properties of the particular ground. 

62. Turning now to the curves showing the value of Ky, it is at once evident that the phenome- 
non is more complicated than in the case of horizontal polarization. It is on this account that it 
is difficult to draw general conclusions as to the radiating properties of vertical aerials. The 
magnitude Kyimax. of the reflection coefficient for y = 90° is the same as for horizontal polariza- 
tion. This is obvious irom physical considerations, for strictly, ‘‘ vertical’ and ‘‘ horizontal ” 
polarization have no significance for a wave perpendicularly incident. As the ground angle 
decreases, Ky also decreases and passes through a minimum value at some angle ,, afterwards 
increasing fairly rapidly, and reaching unity when y = 0. The angle gs is known as the pseudo- 
Brewster angle from its relation to certain phenomena in optics. If the minimum value of Ky and 
the pseudo-Brewster angle y, are known for any particular kind of ground surface, the curve may 
be sketched in with sufficient accuracy for most purposes by observing the general trend of the 
calculated curves given. To facilitate this procedure, the curves shown in fig. 31 may be used. 

63. The phase angles 6y and 6, are also plotted in fig. 30 for conditions corresponding to those 
for which Ky and Ky are given. Again it is obvious that for p = 90°, 6, = 6, and is rarely more 
than a few degrees. In the case of horizontal polarization, the angle 0, gradually decreases with an 
increase of gy and is zero when g = 0. If its maximum value is known, the curve may be sketched 
in with fair accuracy by noting its general resemblance to a sine curve as in paragraph 62 above. 
As an example of the calculation we may find 6, for the conditions previously discussed. 

In paragraph 61 we found, for » = 90° 

__ 1:45 — 70-0406 
= 3°45 — 70-0406 

(1-45 — 7 0-0406) (3-45 + 7 0-0406) 
3-452 + 0-04062 

_ 5 + -00165 ~ 7 0-14 + 70-06 

— 11-9 

ky 

_, 5-70-08 
Tro 

0-08 + @ = — tan71 
. On ta 5 

== — 0° 55’ 

The above example has been worked at some length, but the following “ short-cut” should be 

noted. When fei Barns has been evaluated 

Ky/O, _ »—-1—je 
(p= 90°) y+ 1 — ja 

_ {% = 1) — jh {e+ 1) +53 
— (+ 1)? + a? 

_ + at — 1 — 7 2a 

— —“CHiFt a 
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and when, as is generally the case in practice, v? >> «2 

Ky li * 
= 90°) =" y 

‘Qe \ 
-_ o —-1 UT 

64 > tan ye 7 i° 

9 » 

Ltt 

5 H= 80 T 

=> 10 H =25 | _ ie He 

» LA 
su 5 He BS VA 

8 £10 rhe 
2 op 8 

1-7 4 
an A ( 
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Fic. 31, Cuap. XV.—Pseudo-Brewster angle 9, and corresponding reflection coeffitient 
A, (min.) for various kinds of ground. 

64, The variation of 6, with ¢ is very different from that of 6. Commencing with a small 
negative value equal to 6,, when » = 90°, it is.seen to increase in size very gradually until 
approaches the value ps, when a very rapid variation takes place ; when 9 = 93, 0y = — 90°, and 
for angles smaller than gs, 6y continues to increase in size, becoming — 180° when g = 0. The 
minimum value of Ky and the corresponding angle gs are given in fig. 31 for various values of 

x and Fin order to facilitate the construction of approximate curves of Ky and 6y.
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65, (i) When the appropriate values of K and @ have been obtained and tabulated for any 
given conditions, the corresponding Reflection Factor can be plotted for various values of y, and 
the resulting polar curve used as a correction factor for the free space diagram of any aerial or 
aerial array, taking the place of the Vertical Distribution Factor. As an example, the expression 

J -. Ky? -- 2Ky cos (% — = h sin °) which is appropriate to vertically polarized radiation, 

has been plotted in thin solid line in fig. 32 for the following conditions, viz., x = 20,0 = 4 x 108, 

f=14,4= ; No great accuracy has been attempted as the intention is merely to indicate the 

kind of curve to be expected, The curve shown in dotted line represents the Current Distribution 
Factor for some unspecified form of aerial. The curve shown in heavy line is the polar product 
of the two former curves, and gives the shape of the vertical polar diagram of the aerial or array. 

Absolute values of R.M:S. field strength are of course obtained by multiplying by the factor 2 Fi, 

Fic. 32, Coap. XV.—Vertical polar diagram of aerial over ground, 

= 4X 108, x = 20, (f = 10%, 4 = 4). 

(ii) The foregoing theory assumes that at the boundary between the air and ground, the 
wave front is a plane surface. This incorrect assumption does not lead to significant error in the 
case of horizontal polarization, but with respect to vertically polarized waves, the field radiated 
along the surface of the earth is not absolutely zero as the simplified theory indicates. According 
to certain physicists, a vertical aerial at ground level gives rise to a surface wave additional to 
that derived from the simple radiation theory, but this view is not unreservedly accepted. Its 
protagonists agree that if this surface wave does exist, it suffers very heavy attenuation within 
a few wavelengths from the source, and need not be taken into account in long distance 
H/F and V. H/F communication. , 

TRANSMISSION LINES 
Theory of transmission line 

66. In Chapter VII reference is made to the propagation of electro-magnetic waves along a 
conductor such as a transmitting aerial. It is now necessary to enter somewhat more thoroughly 
into the theory of electro-magnetic waves on transmission lines such as the radio-frequency 
feeder lines used for supplying power from a transmitter to an aerial array, or from an aerial 
array to a radio receiver. The complete theory is also applicable to telephone and voice-frequency 
L/f lines. Before dealing with the mathematical theory, the physical aspect will be discussed. 

3. 

a 

a
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67. Consider a transmission line consisting of a pair of parallel wires of high conductivity, 
perfectly insulated from and at a considerable height above the earth. Let these be connected to 
a battery by means of a reversing switch S as shown in fig. 33. A rapid reversal of the switch S 
is then equivalent to the application of an alternating E.M.F. having a perfectly flat-topped 
waveform. If the switch is closed at a given instant, so that the point A is at a positive potential 
with respect to the point B, an electric field will be set up between these points. The field does 
not however appear instantaneously at all points along the line, we may in fact consider the 
battery continuously to generate lines of electric force. Thus, if a single line of force appears 
between A and B when the switch is closed, and new lines are constantly being generated, the 
second line repels the first, causing the latter to travel along between the wires.. As lines of 
electric force (unless closed upon themselves) must terminate upon electric charges, the movement 

- of the electric lines implies the existence of moving electric charges, i.e. an electric current in the 
wires themselves. Thus, associated with the moving lines of electric force, we have a magnetic 
field consisting of a number of closed magnetic lines forming concentric circles round each 

_ conductor. The direction of the magnetic field relative to the direction of the electric field and 
the current is found by the first law of electro-dynamics. 
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Fic. 33, Cuap. XV.—Electric field between parallel wires. 

68. Now consider what happens when the travelling electric flux reaches the end of the line 
remote from the battery. If the wires are on open circuit, the lines of electric force can travel no 
further, and must tend to “pile up” at the points CD. In being brought to rest, however, they 
set up a magnetic field of opposite polarity to the original, and the growth of this field in turn 
recreates new lines of electric force. These lines now travel back towards the battery. This 
phenomenon may be summarized by the statement that on arrival at the open-circuited end of a 
transmission line, the electric field is reflected without change of phase, while the magnetic field 
is reflected with a phase change of 180°. At the moment of reversal, the magnetic field strength 
must fall to zero, and the electric field strength is doubled. If the remote end of the line is closed 
upon itself, forming what is called a short-circuited line, the reflection process is somewhat 
different. Instead of tending to pile up at the end, the electric lines must gradually collapse. 
In collapsing, however, they give rise to an additional magnetic field which travels on round the 
short-circuited end of the conductor. This magnetic field in turn recreates the electric field as 
before but with reverse polarity. At the exact instant at which the electric field is zero, the 
magnetic field strength is doubled. If the remote end of the line is connected to an impedance, 
partial reflection will occur, unless the terminal impedance has a particular nature and magnitude 
which will be dealt with later.
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General equations for line current and voltage 

69. Although the foregoing physical aspect enables one to form a crude mental picture of 
the process of reflection it is necessary to enter somewhat more deeply into the effects of the line 
constants upon the mechanism of propagation. The line constants are first, the resistance, 
R (ohms per unit length), second, the inductance, Z (henries per unit length), third, the capacitance, 
C (farads per unit length), between the two lines (or between line and earth in an “ earth return ” 
circuit), and fourth, the leakage conductance G (siemens, or mhos, per unit length). The resistance 
and inductance are measured per unit length of line, not per unit length of wire. It will easily 
be seen that in an element of line of length dx, the resistance will be R.dx, the inductance L.dx, 
the capacitance C.dx, and the leakage conductance G.dx (fig. 34). Suppose, then, that an E.M.F. 
is applied to one end of the line, which will be called the input, or sending end, setting up at a 

—-I| dw | -(I-dl) 
- T T 

“eo ' xt+dx 
wee VY Vat ty 

| a re en re ee 
W) -Gdo = S82 Sms ses 28: C.dzr 

1 < = | \ 1 

' wee { H } \ ; 
1 wen f) 1 ‘ 

t Sy 1 1 i (L- dl) <— 

Fic. 34, CHap, XV.—Notation used in transmission line theory. 

point distant x centimetres along the line a P.D., V. If we now take an elementary length of line 
dx extending from x to x + dx, the P.D. between x and « + dx.will be — dV, where 

— dV = (Raz) 1+ (Ldn) 

If the current in the line at the point x is I, it will be I — dl at x + dx, owing to the element of 
current dI which flows in the capacitance C. dx and leakage conductance G. dx. It is easily seen 
that 

dV 
— di = (G.dx) V + (C.dx) 2 

Hence the rate of change of ¥ and I, with respect to the distance from the sending end, is 

dV ay 

~ aa = Le 

aI av 

r
e
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Solution for sinusoidal conditions 
_ 70. The above expressions are perfectly general, and subsequent work will be considerably 

simplified if the applied E.M.F. is considered to be sinusoidal. Under these conditions instead of 
the above equations. we may write oe 

— WN = (R+jol)I .. .. . tee (1) 

~ 226 +j00)V .. .- .- .. . (2) 

because to a sinusoidal E.M.F., each unit length of line offers a vector impedance R + joL, while 
shunted across each unit length we have a vector admittance G + jwC. Equations 1 and 2 
are the fundamental basis of the theory of the transmission line. In developing the latter, we 
must first separate the variables V and I; to do this differentiate equation 1 with respect to x :— 

ay ; at 
~ Fx = (R + 4oL) ae 

us al . 
Substituting for ae from equation (2) 

ay . . 
Fa (RR + pol) (G+ jol)V 

= P°V . - .. .. .. (3) 

In a similar manner we obtain 

a7] P 

71. These equations define P = .(R + jal) G+ joC) = «+ ff. It will be observed 
ohms x siemens: _— 
length “ length ~ length’ 

like Pl, Px, etc., are mere numbers. The complex quantity P is called the transfer constant of 
the line, and consists of a real part « called the attenuation constant, and an imaginary portion 8 
called the wavelength constant, or latterly, the phase constant. Equations 3 and 4 are 
standard forms and the solutions are known to be 

VeM,e 7% 4N,67* en.) 

r=M,.~ 7 +N 2?" re 6) 
where M,, M,, N,, N,, are quantities which depend upon the terminal conditions of the line, and 
are not entirely independent of each other. Since e” is a mere number, M,, M,, etc., must be 

that P is complex and possesses the dimensions so that quantities 

vectors and are therefore printed in Clarendon. It will be shown that M, = M, 2, N, = — M, 2, 
where 

0= (EF jot 

Relation between M,, M., N,, N, 

72, If the values of V and I given in equations (5) and (6) are inserted in equation (1) we 
obtain 

p(m, e~ ?* —n, <**) =(R+jol)(Mje~** 4NjeP*) «ee (a)
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and if inserted in equation (2). 

P(M,e~ Pa —N, oP *) = (G + joc) (M, e ~ Pe ine? *). . we .. (7b). 

On multiplying across by riya 

P (Mm, e~ ? 74m *) = roc (iy 2 um _ m6”) 

= (R + jot) (it, e ~*~, « 
Adding equations (7a) and (8) 

Px 4 — Px 

| 

Px, eee 8) | 
| 

2PM, 2 “* = (R +foL) x 2My 6 | 

Subtracting (8) from ay 

—2P He” * 4(R+joL) x 2N,e7 | . 

N= oN, Stier . 

= — N, %. 

 (R+joL, , “ete tee “a 
The quantity Z) = J Chat is of great importance ; it is termed the characteristic impedance 

or surge impedance of the line. 

_ Introduction of hyperbolic functions 

73. Equations (5) and (6) may now be written / | 

vV=M,s **+m,0°* ve ve oe oe oe (9) 

M, —Px NN, Px 
I=—e — te”, - ees wee (10 x (10) 

It is now convenient to introduce hyperbolic functions, writing 

cosh Px + sinh Px =e Ps 

cosh Px — sinh Px = 6 Lo 

so that (9) and (10) become 

V == M, (cosh Px — sinh Px) + N, (cosh Px + sinh Px) 

== (M, + N,) cosh Px —(M,—N,) sinh Px, ..  .. w. (1D) 

1 = = [(M, — N,) cosh Px — QM, + M,) sinh Px] vee (12)
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Note that we have reduced the number of quantities depending upon the terminal conditions to 
two. Provided M, and N, can be determined we are able to obtain complete information regarding 
the current and voltage distribution in the line. 

Equations for infinite line 

74. The simplest problem to consider, and one of great importance because it brings out the 
physical signification of z) and P, is a line of infinite length to which a known voltage V, (i for 
“input ”’) is applied to the sending end. At the point x = 0 we have V = V,; inserting known 
quantities in equation (11) 

V, = (M, + N,) cosh 0 — (M, — N,) sinh 0 
(cosh 0 = 1, sink 0 = 0} 

Vi = M, + N, 

On the other hand, it is obvious from physical reasons that as we go further from the sending 
end both V and I become smaller, and ultimately when *->0,V+>0,1>0. But when 

% > 00, both cosh Px and sinh Px approach the value B e’*, and therefore 

1 : Px 

Vero =[@h +N) — (4, —N)|5 =0. 

Now 1 e’* is not equal to zero, therefore 
2 

M, + N, — (M, — N,) = 0 

. N, = 0. 

But M, +N, = Vi 

es Vi = M,. 

Inserting in (11) 
V = M, cosh Px — M, sinh Px 

= V, (cosh Px — sinh Px) 

awe 7 .. - . . .. (18) 

and in (12), 

I= us (cosh Px — sinh Px) 
1] 

_V — Px. a .. .. . .. (14) 
ar a 

Magnitudes of « and 6 

75. As already stated P «/(R + joL) (¢ + joC) = « +78. It follows that 

RG + jaCR + jolG —- wo LC = a? + Wap — p 

at — p2 = RG — wLC .. . - . .. (48a) 

Z Qu = w (CR + LG) 
(RG — w®LC)? = af — 2028? + Be 

a (CR -+- LG)? =x 4a? B? 
| 

at + Bt —= (RG — aL C)? + w* (CR + LG) see ae (15) 
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From equations 15a and 15b we obtain 

a Jf \viRe + @ L(G? + oC) + (GR— orL0)} .. (5c) 

p= J ; {Ve + oD (GF Foi} — GR — oc) .. (15d) 

Physical significance of « and 2 
76. Equation 13 may be written 

Ve=Vie 7 ot ie 

= Vie~*—_ ~i* 

= (v, 7 «) (cos Bx — 7 stn Bx). 

The portion within the first pair of brackets may be called the amplitude factor. It indicates 
that the amplitude ¥ of the voltage at ¥ is equal to the amplitude 7°; of the input voltage divided 

by € °*- The factor within the second pair of brackets is a vector operator of unit magnitude. 
Its presence signifies that the phase of V lags behind that of V; by an angle Bx. Thus if 

v= Vi cos (wi + ¢) 

Vv, = zaS cos (wt 4 9 — Bx). 

E 

In a very long or infinite line, therefore, the voltage amplitude at a distance % from the input 

_end decreases exponentially by the factor ¢ — while the phase angle lags behind the phase at 
the sending end by an angle fx. At a distance such that Bx == 2a the line voltage is in phase 
with the supply voltage. Similarly if px = 42, 62, etc., in fact, the line voltage is in phase with 
that at the sending ends at all points where fx = 2nm, and a is an integer. 

Physical significance of 2). 
77. We may now consider the current in an infinite line. At the sending end, where x = 0, 

let it be J. From equation (14) 

Vi V; oo * I= 
Zo Zq 

(16a) 

Hence 4, is the quotient of voltage and current at the input end of an infinite line, and is therefore 
the input impedance of such a line. It also follows that equation 14 may be written 

I=e-?* .. oe os a rn ws . -- (17) 

This equation is of exactly the same form as equation 13 and may be interpreted in the same 
way, i.e. in passing along the line the current is attenuated and its phase delayed just as in the 
case of the voltage. Further, at any point in the line 

V, Gi toe (16) 

thus Z, is the ratio of voltage to current at any point in the line. 

Oo
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Short-circuited line: 

78, We have now shown the physical meanings of the quantities «, # and 2, and may apply 

these to more practicat cases, e.g. a line of finite length terminated by an impedance of some kind. 

Consider a length of line 7 which is short-circuited at the output or receiving end. Let a voltage 

V; be applied at the point x = 0. a 

Then the following data are known :— 

atx =0,V=V,=Vi 

- atx =1,V=Vi=0. 

Inserting these conditions in equation (11) 

Vi =M, +N, 

V, = 0 = (M, +N) cosh P] — (M, —N)) sinh Pl - 

= Vj; cosh Pl — (M, — N,) sinh Pi 

Vi cosh Pl 
“MM Sah PL —_ 

=VWicoth Ph... eee ee (18) 

so that equation 11 may be written ' 

;. V =V; (cosh Px — coth Pl sinh Px) - 

_y, sinh P (i — x) 
= Vi nh PT 

and equation 12 becomes 

I == (coth Pl cosh Px — sinh Px) 

_ Vi cosh P ( — x) 

Now at the input end, x = 0. The current entering the line is therefore ©. 

iv" 2 sinh Pl 

- Zy tanh Pl . .. . .. te .. .. (19) 

Thus we have a most important result, namely that the input impedance of a length / of line 
short-circuited at the end remote from the input terminals, is Z, tanh Pi. 

Open lines oe 
79. Another case of interest is that of a line of length 7, with the output end on open circuit. 

At the input end x = 0, V = Vj, while at the output-end x = 1, I = 0. 

From equation (11) . : 

Vi=™M,+N, : ~ : 

0= zat —N,) cosh Pl — (ML, +N) sinh Pt 

sinh PL M, —N, = (M, +N) 5, 
=VitanhPl..  .. .. .. .. . a ». (20) 

PARAS. 78-79 - 
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and the line equations become 

V, = Vi cosh Px’— V; tanh Pl sinh Px 

I, = Yi tanh Pl cosh Px — sinh Px} 

or *, 
Vv, =v, eee *) | 

cosh Pl =~ 

al hPa re. 
* Boy cosh Pl _ 

The input current is obtained by putting « = 0, hence 

| 1 — Vi Sih Pl 
"By cosh Pl 

Vv, 
~~ gq coth PF oe oe we oe a ee oe (21) 

Thus the input impedance of a length / of open-circuited line is Z) coth Pl. 

Line terminated by finite impedance 

80. Having cleared the air by these preliminary investigations we arrive at the most im- 
portant practical case, namely, a line of finite length /, terminated by a finite impedance of 
Zr, ohms, its nature being unspecified. As before it is known that V = Vj at x = 0. At the other 
end, where x = /, the current and voltage will be denoted by I, and V, (r for “ receiving”). Then 
I, is the current through 2, due to the P.D. V,, and 

J, mals 
Zr 

Putting V = Vj; when « = 0, 

M, + N, = Vi 

Since V, = 2,]; it follows that when x = /, equations (11) and (12) become 

Vi cosh Pl —~ (M, — N,) stnh Pl == { (M, — N,) cosh Pl — Vi sinh it 
oO 

Vi {cosh Pi 4 sinh ri} == (M, — N,) {sina Pi + Zcosh P| 
0 

Vi cosh PI +e sinh Pt! . 
M, —N,= 2 oe (22) ~~ 

_ sinh Pl +- zo Pl | YO 
0 

hence for these conditions, equations (13) and (14) become 

_ gy 2 cosh P (lt — x) + % sinh P ( — x) 
V=Vi z, cosh Pl +z, sinh Pl “ 7 -- (23) 

and 
ravi Z, sinh P (lt — x) +- 2 cosh P (i — x) (24) 

~~ Zig Zr cosh Pl +- % sinh PL - - -
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Equations (23) and (24) give the voltage and current at any distance x along the line. For many 
purposes we require to know only those at the input and output ends respectively, Putting x = / 
in (23) and (24,) . 

Zr . 

Vi=Vieh Plt asmhPi ttt ttt 8) 
7 1 * . . 

I: = Vi cosh PL i sinh Pl oe ws ee oe as (26) 

while putting x = 0 in (24) gives 

_ Vi & sinh Pl + 2, cosh Pl 
. I = Zo z, cosh Pl + Zo sinh Pl te o oe o- oe (27a) 

The input impedance is therefore’ . 

% cosh Pl +My sinh PE 8) 
Z, sinh Pl -+- % cosh Pl 

Zi = % 

Correctly terminated line 

81. A very important case in practice is that which occurs when the terminating load 2, is 
equal to the surge impedance a of the line. When this is so, equation (24) becomes 

Vii Z, (sinh Pi + cosh Pl) 
I Bq Bq (sink PL + cosh PI) 

Vi -% eee ae ne neve (28a) 
. while 

L= Vi 
"Bq (cosh Pl + sinh Pl) 

Vi 
~ _. Pl 

wm Wig bee ae eae ne (28b) 
Zo 

This is exactly the same expression as was found in paragraph 77 for the current I, at a distance x 
from the input end of an infinitely long line. It follows then that if a line of finite length is 
terminated by an impedance equal to its surge impedance, all the energy reaching the output 
terminals of the line passes into the load impedance, which is usually the desired object. When 
the operating conditions are such that 2, = % the line is said to be correctly terminated. When 
incorrectly terminated the whole of the received energy does not pass the output terminals, a 
portion being reflected back towards the input end. The importance of avoiding reflection in a 
transmission line may perhaps be emphasized by comparing it with an aerial. With a few 
exceptions, aerials are built up of conductors with free ends, so that reflection occurs, and the 

length (including the image in certain cases) is made electrically equal to a multiple of so that 

stationary waves are set up in the aerial. By this means we obtain syn-phased currents over 
each half-wavelength of wire (approximately) as explained in the early paragraphs of this chapter. 
The energy supplied to the aerial is then partly radiated and partly degraded into heat. Ina 
transmission line, however, the object is to convey as much energy as possible from one point 
(the transmitter) to another point (the load impedance), avoiding all unnecessary dissipation 
enroute. For this conveyance to be highly efficient, then, the load impedance must be equal to 
the surge impedance of the line.
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82. Returning now to the expression for the current in the load impedance in the case of a 

correctly terminated line, i.e. 

L _ vi 27? 
Zo 

putting P=a+78 

T= ent eH, 
Zy 

We have already seen that the magnitude of the attenuation constant « depends upon the leakage 

conductance G and resistance R, per unit length. IfG, Rand /are very smalle a is very nearly - 
unity and the received current becomes 

(29) 

At radio frequencies, « is given by the following approximate formula which is derived from 
equation (15c) ; 

R , GZ, 
“=o7, 0 3 

and is always a very small quantity. Suppose the line to have a resistance of 20 ohms per mile 
and an insulation resistance of 5 megohms per mile. One mile is roughly 1-6 x 105 centimetres, 

ie. R= 1-2 1074 ohms, 4 =5= 108 x 1-6 X 105 ohms per centimetre, and G = 1-25 = 107"? 

siemens per centimetre. If the surge impedance of the line is 500 ohms, the attenuation 
constant is ; 

= 1-2 4 1:25 x 500 
“2x 10* x 500 1012 x 2 

= 1-203 x 1077. 

Radio-frequency feeders . 
83. In connecting an aerial array to its transmitting or receiving equipment, it is necessary 

to utilize a transmission line consisting of either a twin wire line or a concentric line. In either 
instance the length rarely exceeds a few hundred feet, and the line may be designed to have a 
very low attenuation constant. The theory may then be considerably simplified by assuming 
the attenuation to be negligible, ie. that the line itself has negligible resistance and perfect 

insulation so that in the equation P = 4/(R + joL) (G + JC), R= 0andG = 0. Then 

P=a+ 78 = Vjol X joC = jo/EC, and therefore « = 0, B = w/LC. Similarly the 

equation y= J eae becomes. Zy ==" J z. In these circumstances Z,) is not complex and. 

therefore possesses no reactive component, i.e. the surge impedance is purely resistive, and may 
be denoted by Z,. When its non-reactive nature is to be particularly stressed it will be denoted 
by Rp. 

Twin wire feeders 
84. The inductance of a pair of parallel wires of radius 7, separated by a distance D, is 

L= re 108 10 2 henries per centimetre, — 

C
3
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and the capacitance ON 

C= es farads per centimetre, 
101 Jog, 7 

Z, 9-104 1078 D 
= j jor 810 > 7x 1-208 '810 | 

so that 

The phase constant of the line is sxsily found :— 

B = wovV/LC 

9-2104 1-208 
= Saf, (08 * To 
_ anf 
~ 3% 1910 

_ 23f 
6 

where ¢ is the natural constant equal to the velocity of electro-magnetic waves in free space. 

since! == A, where Ais the wavelength in free space 

Concentric feeders 
85. A concentric feeder consists of an outer tubular conductor containing an inner conductor 

which may be either solid or tubular. If D is the internal diameter of the outer tube and d the 
external diameter of the inner conductor, its inductance and capacitance are given by the formulae 

L= ia logo 5 henries per centimetre 

C= 2416 farads per centimetre 
D 

1035 logy, 7q 

and, therefore, 

Z, = 188 logig 3 ohms. 

\ It is easily shown that, as for the twin wire feeder, 

p24 
\ 
4 

As stated in Chapter VII, where twin wire feeders are used, it is usual to arrange, if possible, that 

the surge impedance is 600 ohms. This implies that the ratio 2 = 150. For example, 18 s.w.g. 

wire has a diameter of -048 inch, and gives a surge impedance of 600 ohms if spaced 3-6 inches
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apart. The surge impedance of a concentric feeder is usually about 60 to 100 ohms, and the 

copper losses are a minimum when =" = 3-6, i.e. when the surge impedance is 75 ohms. For 

ratios smaller than 2 the copper losses are very heavy, but they are not seriously increased by 
a“ 

an increase of 2 up to about 8. 

oo 

Properties of lines of various lengths 

86. (i) The input impedance of a length / of line, short-circuited at the output end, is 

z, = 2, tanh Pl. If the attenuation is negligible, P = jf = 52, 

Z, = By tanh j an 1. 
_ . oo. L 

Since, however, Z) is a purely ohmic resistance of Jf c ohms, 

. (£, 2 
=i [Eton 21, «. ve 1 e te .. (30) 

ie. Z, is purely reactive and may be either positive or negative. The graph of the magnitude Z; 
of the input reactance, against the length J, is plotted in fig. 35. It is seen that at the point 

” 

i=0,2Z,=0. As/ increases Z, assumes positive values, e.g. at 7 = 2 Z,= Zo, and increases 
8 

until at 1 = ? Z, becomes infinite. In the range/ = 0 tol = j then, the line behaves as an 

inductance, the value of which may lie anywhere between zero and infinity. Consequently, a 

dl 

gs 
5 3 | | _ 
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=v 

“SS at | -_ 
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— 

Fig. 35, Cuarp, XV.—Reactance of short-circuited line. 
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length of line may be determined which will act as an inductance of any desired value for a given | 
frequency. Suppose we desire a line to have an inductance L’, 

jul! = jZ,tan =) 

Qn wl,’ 

tan Th = 
Qn -1-oL' 

qn ze 
A -—i ol’ 

io on tan Zz" 

Example 

Calculate the length of 600 ohms line which will act as an inductance of 5uH at a frequency of 
5 M/cs. 

3 x 108 
A= 5x 10° 60 metres 

Lm tan 1 22 x 5 x 108 x 5 x 1078 

~ On 600 

_ 9. 17 = 9-56 ian 15 

tan —1 ro =14° 41’ or 0:25 radians 

I= 9-56 x 0-25 

=: 2:4 metres. 

In the range ito 5 tan 2a is negative and the reactance of the short-circuited line is capacitive, 

varying from infinity to zero, By a suitable choice of /, its reactance may be of any value whatever. 
If it is required to obtain a line of capacitance C’ farads, 

\ 1 . Qn 
Fat ~ 2 Z0tan! 
Qn I 

tan Fl = — Cor. ; 

i= A tan-t (- =r) 
2n wC'Z, 

A . A 
Over the range 5 to A the curve repeats the values in tne range 0 to gy and so on. 

(ii) The input impedance of a length of line having its output end free, is Z; = Zy coth Pl. 
For negligible attenuation this becomes 

Z= — fly cot 1... bee .. (31)
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As before, then, the impedance is purely reactive ; 2; is plotted against / in fig. 36. By using a 

length of line less than 4 we may obtain a negative (capacitive) reactance of any value between 
4 

— oo and 0 while lengths between 4-and $ behave inductively. 

6 f 

S 4 Se 
33 
= 9 yi 

| 

Ni ° x X 7x x 
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Fic. 36, Cuap. XV.—Reactance of open-circuited line. 

(iii) Lengths of line are often used in this manner in matching an aerial array to a transmission 
line. It is obviously desirable, as a rule, to use the shortest possible lengths of wire, so that in 

practice a length less than 7s generally employed. It must be short-circuited if required to act 

inductively, and on open circuit if required to act capacitively. 

Properties of quarter-wave line 

87. The properties of a line exactly 4 in length are of particular importance. The input 

A 
impedance of a loss-free 4 line, terminated by a non-reactive impedance Z,, is given by 

Z; cos 5 +52 sin = 

Z,=Z, 7 , 2 

Zq C08 5 bf Zr Sins . 4 

= Z, jo bec cos—- == 0, sin = 1 A = 2957p ause g = 0, sins = 1, 

. 7 20 al a (32) 

This property of the Fline is used for matching purposes. Suppose we have a 100 ohm load, fed _ 

from a 600 ohm line. Then Z, = 100, Z, = 600, and if they are directly connected, reflection will



' occur at the termination. To avoid this, we may interpose a 

\ 
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a 

4 | 
that its surge impedance Zm is equal to W/Z, Zr, i.e. to 4/100 x 600 = 245 ohms. The 600 ohm 

length of feeder of such a spacing 

line will then be correctly terminated, for the input impedance of the line, terminated by 

2 2 

100 ohms, isZ™ 245 Z, =T00 ~ 600 ohms. 

Example 

In the instance cited above, calculate the spacing of the Hine in order that Zm = 2450hms, 

if the wire is 18 s.w.g. 

Diameter of 18 s.w.g. wire is -048 inch, i.e. y = -024. 

D245 
log10 > = 276 0-888 l 

Antilog 0-888 = 7-727 

2 == 7-727 
¥ 

D = 7-727 X +024. 

== 0-185 inch. 

It is not practicable to space wires as closely as this, except possibly in the case of feeders connected 
to receiving aerials. A possible solution is a multiple-wire transformation feeder, 

Properties of lines of length 

88. We will now consider the input impedance of a length of line equal to some integral 

na 
9° 

multiple of 4 terminated by a non-reactive impedance Z,. Then 

2x 

A 
2n 

A 

Z, cos 2B 4 j Zo sin —1 
Z=Z (33) 0 

Zy cos = b+. 5 Z_sin b 

Putting _ m5, we see that Z; depends upon whether is even or. odd. If # is odd, 

Qn Zr 
Fz i=na = 3n, 52a, etc., and sin nxn =0, cos nn = —1. Hence Zj = Z, x z= Zr. The 

0 

magnitude of the voltage at the output terminals is 

Vis Vi 27 a 2n 
4 Ly sin— 14+ Z, cos —] 

A. A 

Vy, 2. 
—_ r 

== — Vj.
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A 

2 
unity-ratio transformer, the output P.D. being equal in magnitude to the input voltage, with a 
phase difference of 180°. On the other hand if is even we have sin na = U, cosun = + 1. Hence 

Zr . 

Vi=Vi nn Locos 

Ly 
= V; Z. 

= Vi. 

Ze. +0 
Also Zi =2o5 9 

=Z, 

Thus, a length of line equal to an even multiple of fis a perfect unity-ratio transformer, the 

Thus we have the important result that a length of line equal to an odd multiple of —is a perfect 

input and output P.D.’s being in phase. 

Voltage distribution along a feeder 

89. The voltage distribution along a feeder may be calculated from the formulae given in “ 
previous paragraphs. Taking a length of feeder terminated by a non-reactive impedance Z; = Zg, 
we may apply equation (13) of paragraph 74. 

. 7%, 

V,=Vie~*=Vie a 

Thus if Vi =F cos (wt + ¢) 

V,=¥° cos (of +9 285), 

i.e. the amplitude of the voltage is the same all along the feeder because we have assumed the 
; : . : A . . 

attenuation to be zero. The phase changes continuously, so that points 7 apart are in opposite 

phase. The input current is z cos (wt + ¢) but at a distance x from the input end the current is 
0 

Fos (of +--+ op on, . Since ammeters and voltmeters do not measure phase difference, such a 
0. - 

meter will indicate the same R.M.S. current (or voltage) at all points along the line. 

90. We will now consider a general case, in which the feeder is terminated by an impedance 
m Z, where m may have any positive finite value, either integral or fractional. Applying equations 
{23) to (27) of paragraphs 80 e¢ seg. 

m Zy cose (1 — #) +5 Zy sin (L — 2) 
A A 

V.= Vi Qn Qn 
m Lo cos ——b + 72, sin—-t 

Mm. COS *2 4 — x) + j sin=a (i — x) 
=V; 5 (34) 

bs ... 2a 
m cost +7 sinh 

— 

()
 



zero. That is, when=* (i — x) 
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We wish to find how V, varies with x, and therefore need consider only the numerator of the 

bracketed portion. This is complex, and its modulus is +/m?*cos*6 +- sin?@ = N(V,), and 
2n 

91. The nature of the variation of V,, at different points in the line, can therefore be obtained 
by plotting N(V,) against x. Its maxima and minima may‘also be obtained by the differential 
calculus. Differentiating N(V. x) with respect to 9, and equating to zero, we find that maxima or 
minima are given by (1 — a sin 0 cos 0 = 0. 
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Fic. 37, CHAP. XV. —Location of voltage maxima for values of m greater and less than unity. 

tee 

Unless m = 1, sin 6 cos 6 must therefore equal zero, which is the case if @ is any multiple of 

g radians. Hence the maxima or minima occur when @ = 5" where # is any positive integer or 

=" or i — x) = ne yor zero. It follows, therefore, that either 

a maximum or a minimum of voltage will occur at the termination, i.e. where 1] = x. If m is 
greater than unity it will be a maximum, if m is less than unity, a minimum. At a distance of 

qirom the termination, there will be another turning point so that the voltage distribution will 

be either as in fig. 37a or fig. 37b, depending on whether m > 1 or n<1. It will be seen that m 
is the ratio of the maximum to the minimum P.D. or vice versa. The current distribution along the 
feeder may be calculated in a similar manner. The resulting curves are very nearly sinusoidal 
but not exactly so, except in the case of short-circuited or free lines, because a terminal load will 
necessarily call for a feed current. The calculated current distribution for a 600 ohm line, for 

. Ig 
ratios——22 

IT max 

from 0-1 to 0-9, are given in Ag: 38.
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Measurement of surge impedance 
92, (i) If the operating frequency is sufficiently low, it is possible to determine the surge 

impedance of a line by actual measurement. Let the length of the line be 2. The input impedance 
is first measured, with the receiving end on open circuit ; let this be Z; (f for “ free’). The input 
impedance Z, (c for “ closed ”’) with the receiving end on short-circuit is also found. Then 

Z; = Z, coth Pl 

Zo = Zy tanh Pl 

from paragraphs 78 and 79. 

It follows that . 
ZZ, = 2, coth Pl x Z, tanh Pi 

= 2,2 | 
Zp = VE Lo 

(ii) The following method has also been proposed.- On erection, the line is extended for rather 

more than ; past the proposed terminating point, and is then energized at the intended frequency, 

or a closely adjacent one, in such a manner that stationary waves are set up along the line. The 
wavelength’ on the line itself is obtained by observation of the minimum current at adjacent 

A 

8 
of line is then removed from the free end and a calibrated variable condenser joined across the 
ends of the line in its place. The capacitance is varied as necessary until the current minima 
appear at the same points as before ; when this is achieved, the capacitance is exactly equivalent 

current nodes by means of an ammeter and transformer (see paragraphs 4 and 128). A =length 

to the length of line which was removed. Referring to paragraph 79, the impedance of a 4 
8 

length of open loss-free line is 

Le Z,= _ jZ,y cot =p 
8 

. 2 A 
= — 4Z, cot 78 

. 7% 
= — j£ cot Z 

=—_— 42 9- 

Since the capacitance C has exactly the same effect on the line as the impedance Z, it follows 
& 

that 
1 

jot 44 

1 ; 
Foc =—j£y 

1 
or Zo = at"
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CHAPTER XV.—PARAS. 93-94 

Radiation due to travelling wave 
93. Although in most forms of aerial the arrangement is such that stationary waves are 

established along the wires, it must not be thought that this is an essential requirement for 
radiation to occur. The fact that radiation can and does occur from wires carrying travelling 
waves is of importance from two points of view. First, in the case of properly terminated feeder 
lines, considerable radiation will occur unless the lines are very close together, i.e. less than about 
0-054. Second, it is possible to design aerial arrays for directional transmission and reception, 
the action depending entirely upon the radiating properties of a long, properly terminated wire. 
The directivity of such an aerial for receiving purposes depends upon the reciprocal properties 
mentioned in paragraph 3. 

94. If a long straight wire is situated in free space and carries a travelling current wave, the 
radiation field set up by the current is easily calculated. Referring to fig. 39 consider a wire of 

length i and let the current at an origin O at the mid-point of the length be I, = I ef oF Ata 

Direction oF 
propagation 

f - 

I wee ToP 
xo - 

4 aa ” . 

_dx Yr" of 7 

im th 
oo 

. 

x L@ oe 
l 

p
e
 

i
 

it 

Fic. 39, CHAP. KV.—Wire carrying travelling wave. 

point P, at a distance r (> > /) from the origin, and at an angle 6 to the perpendicular through O, 
the field dy, due to the current in a short length dx of conductor closely adjacent to O, may be 
found by treating the length dx as a hertzian doublet, giving 

2a 
.( ot +2 — 

ayy = cos nae x Le ? tr) . ™ -+ (85) 
? 

Consider another element of length dx at a distance x from the origin. Since the wire carries a 
travelling wave, the current I, in this element will have the same amplitude as at the origin, but 
will be out of phase with it. If # is measured in the direction of propagation along the wire, I, 

lags on I, by 25 x radians. Also, the point P is distant (r — x siz 6) from the element, and the 

field due to the latter will be 

Qa 
i[ot+ J— Fo —ssine)| 

dy = cos bx x Tee aa 

60 vos edu xe e 4 
ra 

. fe on 2a 
otf+a-—- ar j asin 6 i( 27 4}? . -. (36)
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5, 

But | I,=I,¢ 

fm Bn 27 oo 7-= = alsin 6 — 1) e 
dy =O ™ ons ole. (3 i) i ™ ak, “ 

; ra 

2n . : 
ix? (sin 0 — 1) 

=Acoste aX an 7 -. (37) . 

; x 2a 7 j a +3— 3% ) { \ 
where, for brevity, A= °° =I Fe ( 2047, ~ 

The total field set up by the whole length of conductor is obtained by integrating between the 

limits 2 = + Sand x = — 5 giving 

x= +3 ; 

2m sin 8 = 1) ‘ 
y = Acos 4 gi ik ax 

-_——_ — 

A cos 6 [ 72 1 (sine — 1) ~5Fsno— | 
= & —eé 

j 22 (sin 6 — 1) . 

1 ae a 
, 4 A cos 0 ye . 

—j 2x (sin @ — 1) x 2 sin-——(sin 6—1). .. +e .. (38) 

Polar diagrams 

95. Neglecting the factors —j and A for the present, the field varies with the angle @ in 
accordance with the equation 

. cos 6 . m,. 
f@®= pyre anes la Ee 6 — » |, 

and this is more compactly expressed in terms of the angle y = = 6 which is the angle of the 

direction x with reference to the axis of the wire. Then 

— cot? -sin | 2% se 4 f(y) = cottsin [74 sin? |. ‘ 

The total instantaneous field is therefore 

a Qn # Nee 
_ 62 i( + 4-3) A yp. [= . ¥]t i oa 

y= 7a! g —-,o0t ssin | > sints j DNS 

2n , , a 
60 i( ot -%r) { y. Ei 9 al ae 

= le cots sin =z sin®s5 § ae .. (39) 

_It is interesting to note that this field lags by 5 radians on that which would be produced by a 

stationary wave in the same wire. The portion enclosed in curved brackets, that is, f(y}, is plotted ; 

C
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in fig. 40, sheets 1 and 2, for various values of / up to 44. It is seen that the length of wire has 
an influence upon the magnitude of the maximum radius vector and also upon the angle of the 
main lobe with reference to the axis of the wire. These are collected and shown graphically in 
fig. 41. 

Radiation from sfraight wire carrying fravelling wave 

704 (a) Curve showing angle of main lobe 
60- (b) Curve showing length of radius af maximum -6 

50- 5 
af YQ 

B a0. H4e 
> © 

‘So 
20 re os 

¢ 
1074 -} c 

0 i] ! i { j i i f L 9) J ! i L { i 

1 2@ 3 4 5 6 7 8-9 WH R GB HH 

Length of wire in A unils 
2 

Fic. 41, Cuap. XV.—-Radiation due to travelling wave. 

96. It is of interest to refer to the particular case when / == > The R.MLS. field is then 

60 yp. 9) | 
Fy 42) = > I cot sin (= sin? 5 

As previously shown, a dipole gives a field 

cos (5 sin °) . 
; 60 

I (dipole) = 7 I C08 

which is equal to 2 Iwheny =0. Fora length! = ; the maximum value of f(y) occurs when © 

A 
3 

wave sets up a field 25 per cent. greater than a dipole carrying the same current. In the former 
case the current is of course the same at all points in the line, whereas in the dipole the current 
referred to is that at the mid-point. 

y == 65°, This value of f(y) is nearly 1-25, so that a length of conductor carrying a travelling 

Application to radiation from transmission line 

97. Care must be taken when applying the above results to transmission lines. Let us suppose 
a twin wire transmission line to have such small separation that the two wires may be regarded 
as coincident in space. Each wire hasacurrent J and carries a travelling wave ; the polar diagram 
will thus be the algebraic sum of those corresponding to the respective waves. The currents in 
the two wires are in opposite directions but the wave direction is the same. Hence the two 
diagrams lie upon each other but are of opposite sign, and the feeder is shown to be non-radiative. 
If, however, the wires are energized in such a manner that both the. wave direction and the
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instantaneous current are reversed in direction, the polar diagram is the sum of two diagrams 
appropriate to the length of conductor, one of which is turned upside down and so placed that 

the two origins coincide. This is easily seen by tracing the diagram for} = ; (fig. 40) on tracing 

paper, turning it about the origin through 90°, and then adding the polar radii of the tracing and 
the original diagram. The result is found to be identical in shape with fig. 6, but has a maximum 
radius of two units. This is not surprising since fig. 6 is by hypothesis the polar diagram of a 
conductor carrying one half of a stationary wave formed by reflection at its open ends, the loop 
current being 2f. By suitable manipulation, then, the travelling wave diagrams may be used to 
determine the polar diagrams of conductors carrying stationary waves. 

98. Revertitig to the case of a single wire carrying a travelling wave it is obvious that, in 
free space, the polar diagram in the plane perpendicular to the axis of the wire is a circle, i.e. the 
wire radiates uniformly in all directions. The solid polar diagram is therefore obtained by rotating 
the axial diagram about the wire. It follows that if we have two parallel wires carrying travelling 
waves, the polar diagram of the two is obtained by multiplying the axial diagram. by the 
appropriate Grating Factor. In a twin wire transmission line carrying equal and opposite currents, 
the grating factor is given by row E of fig. 8. These diagrams are however of little practical use, 

oe ge . A 
for the present purpose, because transmission line spacing is usually much less than =, the smallest 

spacing given. For closer spacing, however, the grating factor diagram closely approximates to 

two circles in contact at the origin; as the Grating Factor is 2 cos (90 — ee cos a), the diameter 

of this circle is easily seen to be 2 sin 16 . For example, if ‘ = (0-05, mn = 9,2 sin = 

0-3128 which is the diameter of each circle. It will be seen that for this spacing there is quite 
appreciable radiation, but this is greatly reduced as the spacing is decreased. 

\ 

Effect of unbalanced currents in transmission line | 

99. When the spacing is very small, i.e. of the order of ay 

is of more importance than the actual spacing. By methods already used it is easily shown that 
if the currents are 7,, Ip, and Jy = M {BI a, the field at a radius ry and angle y is approximately 

=O Fy) LTE OM cos 8. 

the effect of unbalanced currents 

Thus, if ‘ is very small, and 8 = 180°, the Grating Factor diagram becomes a circle of diameter 

1—M. 

Effect of proximity of ground 

100. So far the presence of the ground below the feeder line has been neglected. If perfect 
conductivity is assumed, the image of the feeder must be considered to carry a wave travelling 
in the same direction as in the feeder, but with the instantaneous current in the opposite direction 
at all points. The field due to the feeder must be therefore multiplied by the Vertical 
Distribution Factor appropriate to a horizontal dipole at a distance above ground equal to that 
of the feeder. 

a 
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Properties of twin wire and concentric feeders 
101. In order that the transmission line theory may hold, it is necessary that the current 

at each point in one of a pair of twin wires shall be equal in magnitude to the current at the 
corresponding point in the other. Now each wire has a capacitance with respect to earth, and 
there is also a capacitance between the two wires. The line currents at corresponding points. 
can only be of equal magnitude if all corresponding points have equal and opposite voltages 
with respect to earth, and the currents, although equal in magnitude, are then exactly 180° out 
of phase. Under these conditions the line is said to be balanced with respect to earth. Ina 
properly terminated and balanced line, the power losses are almost entirely due to the ohmic 
resistance, and the efficiency of transmission fairly high. As an approximation, the efficiency 

may be taken as (100 —_ 7) per cent., 2 being the length of the line. A little reflection will show 

that although the line itself may be balanced, the circuit as a whole cannot be so, unless the 
input and output impedances are also symmetrical with respect to earth. Thus, a horizontal 
dipole (fig. 42a) is a suitable load for a twin wire feeder, but an earthed aerial (fig. 42b) is not. 
If it is necessary to feed the latter by means of a twin wire feeder, a coupled circuit may be used, 
as in fig. 42c. It may be necessary to place an electro-static screen between the two coils as 
shown. As an alternative the circuit of fig. 42d is suggested. Here the electrical centre of the 

(a) Dipole forming verealy (b) Earthed. aerial forming 
balanced load entirely unbalanced load 

Balanced and unbalanced loads on Swin wire feeder 

Y 

| | 
. Yd) 

@) Balancing by > 
—l— cenlre -lapped coil tl 

«€) Balancing by means of = = 
screened RE Transformer 

% 
wee ee Ree ee ew ee ee ee me 

- 

(e) Unbalanced load on concentric feeder 
Fic. 42, CHap. XV.—Balanced and unbalanced loads.
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coil is earthed, and the feeders are tapped in at electrically equidistant points on each side of 
earth. It must be noted that since the aerial is connected to one end of the coil, the capacitance 
to earth of its two ends may be very different, and the electrical and geometrical centres are not 
usually coincident. Similar considerations apply to the input end of the feeder. Although it is 
possible to transmit power along an unbalanced line (for example, as in fig. 42b) it is found that 
standing waves are set up, with maxima and minima of different values and at non-corresponding 
points in the two wires. The efficiency of transmission is then very low and, in addition, it is 
impossible to predict, even approximately, the behaviour of an unbalanced line. 

102. In a concentric feeder there is practically no external field, because the currents in the 
outer conductor are confined to a very thin layer on the inner surface, and the outer portions 
act merely as a screen. The outer conductor may, therefore, be earthed without affecting the 
electrical characteristics as a transmission line. It follows, therefore, that an earthed aerial may 
be fed by means of a concentric feeder as in fig.42e. On the other hand, if it is required to feed a 
balanced load from a concentric feeder, some form of coupling device must be employed. This is 
exactly opposite to the conditions governing the use of twin wire feeders. 

Methods of balancing the concentric feeder 

103. As it is often necessary to feed a balanced aerial or aerial array by means of a concentric 
feeder, two methods of doing so will be described. The first is very simple and depends upon the 

fact that a length sof transmission line acts as a perfect 1/1 transformer (with a phase reversal 

of 180°). Referring to fig. 43a, suppose T,, T, to be the input terminals and T,, T, the output 

terminals of a section of feeder in length. If an impedance Z, is connected across T,, T,, and 

a P.D, V; exists at T,, T,, the voltage across Z, at T;, Ty, will be — V;. In addition, the impedance 
of the line, as measured at the terminals T,, T,, with the load Z; so connected, will be Z;: ohms. 
The load so connected is, however, completely unbalanced. Now suppose that at the end of a 

. : A . 
transmission line, we measure backwards towards the input end a distance equal to 5, and bring 

out a suitably insulated connection from the inner conductor, as shown in fig. 43b. The terminals 
T, and T, are then at equal and opposite potentials with respect to earth, and are suitable for 

Fic, 43, Cuap. XV.—Balanced output from concentric feeder—first method.
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feeding a balanced load. Since, however, T, and T, are usually required to be in proximity it is 

convenient to fold the ; length of cable as in fig. 43c. This will probably affect the velocity of 

the wave along this portion and it may be necessary to determine the exact length by trial and 
error. 

104. The effective impedance of the load, when connected to the output terminals, is only a 

This may be seen from the following considerations. “Since the actual impedance between T, 
and T, is Z,, and it is balanced with respect to earth, its centre point is at or near earth potential. 
The outer conductor is also at or near earth potential, so that between T, and earth we have an 

impedance of ze ohms and an impedance of @ ohms between T, and earth. But the latter 

impedance may equally be considered to be connected between T; and earth, from the argument 
in the preceding paragraph, and therefore the transmission line must be considered as being 

terminated at T,, by two imipedances in parallel, each of 3 ohms, i.e. by a ohms. 

105. The second method is as follows. A length / of copper tube A B of the same external 
diameter as the outer conductor of the feeder, is placed parallel to the end of the transmission 
line, and is electrically connected to the latter at A as in fig. 44a. The inner conductor of the 

A ~ l > 73 , + 

1° 3% ee =H 
| No earth lo 14 (6), 
‘right of this line Te , 

x (a) \ 

A : 
T a wooaeeaereaeaeeee =p0 eee eee ee oe 

Tg ~ (c) (d) y 

Fic. 44, Cuap. XV.—Balanced output from concentric feeder—second method. 

transmission line is connected to the added tube at B and the balanced output is then taken from 
the terminals T, T,, which are connected to the external conductor of the line and the added 
conductor respectively. It must be noted that the length / of both these conductors must be 
insulated from and preferably symmetrically disposed with respect to earth. The explanation 
of the operation of this,device is simple, but rather more difficult to visualize than that previously 
described. Suppose that at the input end we apply a voltage Vi, it is possible to find an equivalent 
voltage V;’ and impedance Z’ which, when connected between the terminals T,’, T,, will cause the 
same P.D. at these terminals and will deliver the same current to the load. Now the point T,’ 
has (practically) zero capacitance to earth because it is entirely shielded by the outer conductor. 
It may therefore, as a preliminary, be considered as an entirely isolated point connected to T, 
by a generator of voltage V;’ and an impedance Z’ in series, neither of which possess capacitance 

?
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with respect to earth (fig. 44b). If now the extra length of conductor is added as in fig. 44c, and 
the terminal T; connected to the point B, it is obvious that the output impedance is symmetrical 
with respect to earth. The inner conductor may therefore be connected to T; as in the dotted 
line. We have, however, added, at the points Ti T,, an additional parallel impedance due to the 
short transmission line formed by the two parallel tubes. Denoting this by Z,, it has already been 

shown that Z,= 7 Z,' tan =, where Z,’ is the surge impedance of the length / of parallel tube. 

Ifj = - 12, becomes infinite, while if 7 = > Z,is zero. On either side of ; Z, is either capacitive 

or. inductive, hence by suitable choice of tan effective reactance of any desired value may be 
placed in parallel with the actual load. The resistance of the load may be matched te the surge 
imperiance of the feeder by choosing suitable locations for the terminals T;, T,; in fig. 44d, a 

5 A dipole i is fed in this way, the output terminals being located a short distance from the ends of 

the parallel tubes. 

Comparison of twin-wire and concentric lines 

106. In practice, both twin-wires and concentric feeders are used according to local conditions. 
It is not possible to give any definite rules which will govern the adoption of either type. The 
following summary of their relative. advantages and disadvantages should be taken into account 
in any decision. 

(i} Type of load 
(a) Twin feeders are inherently balanced and are suitable for any type of load consisting of 

an arrangement of dipoles. If the load is not symmetrical with respect to earth, some form of 
coupling device must be adopted. 

(2) Concentric feeders are inherently unbalanced and are suitable for unbalanced loads 
such as earthed aerials. If the load is symmetrical with respect to earth some form of coupling 
device must be adopted. 

(ii) Constructional 
(2) Twin feeders are cheap to construct and repair. In the field it is even possible to erect 

a workable line from field telegraph poles and improvised insulators such as glass bottles, although 
of course a high transmission efficiency cannot be expected. On the other hand, since a twin-wire . 
line should be several feet above the ground, it is difficult to adopt this type where the transmitter 
or receiver is installed underground. 

(6) Concentric feeders are expensive to construct, difficult to repair in the event of a 
mechanical failure, and are impossible to improvise. They may, however, be buried and led to 

_ an underground station. 

(iii) Convenience 
(a) Twin-wire feeders occupy a . considerable space, particularly where a large number of- 

aerials are energized from transmitters in the same building, because they have an external field, 
and unless different lines are well apart they will affect each other. 

(8) Concentric feeders are very compact and may be placed in proximity without mutual 
interaction. . 

(iv) Breakdown voltage 
(a) The breakdown voltage between twin wires of suitable spacing is very high. Flash over 

is not likely to occur with properly matched and balanced loads, at any rate with the power 
required in service transmitters.
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(6) With concentric feeders, the spacing between conductors is comparatively small and 
they are more likely to flash over. It is therefore essential, from this point of view alone, to 
ensure that no standing waves exist in the feeder. 

(v) Transmission losses ; 
For the powers used in the service, i.e. up to a few kilowatts, there is probably little to choose 

between the two types, although accurate figures are not available. For very high power (e.g. 
500 kW.) concentric feeders may be better. . 

(vi) Radiation and pick-up 
(a) The power radiated by a correctly matched twin-wire feeder is not large. In reception 

the pick-up is correspondingly small, but is often difficult to eliminate completely. 
(6) With concentric feeders, radiation and pick-up are practically non-existent. For special 

purposes where freedom from pick-up is absolutely essential, e.g. a remote D/F system, 
concentric feeders must be employed. Again, if it is proposed to use a very high frequency 
transmitter in an aeroplane, and a feeder line is necessary, the concentric type is almost 
compulsory. 

MATCHING DEVICES 
Necessity for matching 

107. (i) It will be appreciated from the foregoing that in order to convey the greatest possible 
amount of power from a transmitter to an aerial system by means of a feeder line, the input 
impedance of the feeder must be matched to the output impedance of the transmitter, and the 
input impedance of the ‘aerial must be matched to the surge impedance of the feeder. At the 

Fic, 45, Cuap, XV.—Example of mis-matching. 

transmitter end, the suitable matching devices are usually incorporated in the design of the 
transmitter and need no further comment. The matching of aerial to feeder must often be dealt 
with by the personnel responsible for bringing the station into operation, especially on active’ 
service. Unless this matching is fairly close, the efficiency of the station may be very low. As 
an example of what must be avoided if possible, take the arrangement shown in fig. 45a. This is 

fairly satisfactory if the feeders are, electrically, in length, as explained in Chapter VII. If, 

however, a feeder of indefinite length is used, a purely physical consideration will show that the 

arrangement is far from efficient. If it is considered as a aerial connected to one side of a 

transmission line, tbe aerial has an input resistance of some 3,000 ohms, while the feeder will have 
a surge impedance of the order of 600 ohms. On the other hand, we may assume that the feeder
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A 

4 
feeder has been splayed out in order to show the current distribution on this assumption. It is 
now seen that the arrangement is equivalent to a 4 aerial fed at-a current loop, and as the aerial 

is so folded that a length of is non-radiative, its input resistance is of the order of 80 to 100 ohms 

is effectively terminated at a point from the aerial connection. In fig. 45b the final —lengthof 

only. Regarding the arrangement in either of these ways it is seen that the ratio a (or) is of 
0 r 

the order of 5. Although it is rarely possible to obtain a perfect match 2 = 1), the aim should 

be to attain this within 25 per cent. ° 

(ii) Since a well-designed radio-frequency feeder is practically loss-free, and its surge 
impedance is to all intents and purposes purely resistive, stationary waves will only be suppressed 
if the termination is also purely resistive. If the input impedance of the aerial has a reactive 
component, this must be balanced out by incorporating an equal and opposite reactance in the 
termination. 

Limitations of R.F. transiormer as matching device 

108. At first sight the problem of achieving an approximate match between the feeder and 
the aerial system would appear to be comparatively simple, merely involving the design of a 
suitable radio-frequency transformer. In practice, however, it is very difficult to obtain a 
practical solution by this method. This would present little difficulty if it were practicable in 
a transformer of this kind to achieve a coupling factor approaching unity, but actually it is 
rarely possible for it to exceed 0-5. This is due to the necessity for well spacing the coils, in order 
to avoid capacitance coupling and to permit the development of high voltage across the input and 
output terminals without insulation breakdown. It is highly desirable that, looking into the 
input terminals of the matching device, the load sha!l be non-reactive. If this is not so the power 
factor of the load will be less than unity and, for a given input to the aerial, the line current 
must be greater than with a non-reactive load. Since the line cannot have zero resistance, this 
must lead to power loss in the feeder and to low efficiency. Further, the surge impedance of a 
radio-frequency line is practically non-reactive and should, therefore, be terminated by a purely 
resistive load. It is possible to bring the power factor to unity by the introduction of a suitable 
condenser or condensers in addition to the transformer, but the design of such condensers is again 
beset with difficulty. They must be located near the aerial and, therefore, in weatherproof 
casing, and yet must be very highly insulated from earth. In some instances, the capacitance 
may be only about 100uuF and yet the plate area must be sufficient to carry the full feed current 
without overheating. In addition, consideration of breakdown voltage may necessitate a large 
spacing although the external field must be negligible. The two latter requirements lead to a 
very bulky and extremely expensive condenser. Unless a transformer is absolutely essential 
it is customary to perform the matching by means of an electrical network consisting of 
arrangements of impedances. These impedances often take the form of suitable lengths of 
transmission line. 

Principle of matching network 

109. In dealing with matching by means of electrical networks, we shall assume that the 
aerial itself, at its input terminals, offers resistance only. This resistance will be denoted by R,. 
The line will have a surge impedance Z,, which may be taken,to be purely resistive and denoted 
by R,. The resistances R, and Ry being unequal, we require to insert some matching device 
between R, and R,. This will be some arrangement of reactances which must be of the lowest 
possible resistance. Before dealing with some of the various possible arrangements consider 
the matching unit shown in fig. 46, in which the exact arrangement of the apparatus is unknown. 

) 

v
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Fic. 46, Cuap. XV.-—Insertion of matching network. 

The requirements are that if the resistance R, is connected across the terminals T,, T,, the 
impedance, measured at the terminals T,, Ty, is Rs. On the other hand, if a resistance R, is 
connected to T,, T,, and the impedance measured at T;, T,, it must be equal to Ry. This reciprocal 
relation is the essential property of any matching network, and is true if the latter consists of 
reactances only. . 

L unit ® 
110. The simplest possible arrangement is the “ L unit ” which consists of two reactances 

jA and jB ohms. If R,is greater than Ry, say Ry = Ry, m > 1, the arrangement is as shown 
in fig. 47a, whereas if Ry > R,, say Ry = nR,, the arrangement will be as shown in fig. 47b. 
Taking the former case, the input impedance will be 

og jBR, 
Z,= 9A + RGB os as ..» (40a) 

. 7BR, (Ry — 7B) 

B°R . BR,? 
= peti (gee mt 4) oe oe ae (40c) 

iA o- © J a 
= 3 <— 

hy js oly 
“ts “> 

oO re) 

(a) H,> Ko 

o ja op 9 

[> Pred 
on “ - 

<< “s> 

} é 
(bt) Ay < Re, 

Fic. 47, Cuap, XV.—L-type matching units.
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We require Z; to be equal to R,, i.e. purely resistive, and the imaginary part must vanish, i.e. 

BR? ; 
A+ pai R= 0. - .e a es be s« (40d) 

; B'R oo 
Ro = pat Be oe ae oe os oa ee (40e) 

from the above equations 
Ry (Ra? + B) = BR, 

B'(Ry — Ri) = RRs? 
RR? 2 O**A 

B ~ Ry —_ R, 

B= a Trot Ry, (40f) 

because R, = 1R,. 

Also 
2 

A=— _,BRsb 
R,? -- B2 

Inserting the above value of B, 

eo = xX n*Ry? . 

n2 ‘ 
n*Ry 2 +s Tj R,? : 

aVFZik, oe we 1. ee ee (408) 
Thus the series and shunt reactances must be of opposite sign ; ‘if A is inductive B must be 
‘capacitive and vice versa. It will also be observed that AB = 1R,? = R,Rp. 

Example.—If R, = 3,000 ohms, and Ry = 600 ohms, » = 5, V/n—i=2, 

= + 2R, = + 1,200 ohms. 

AB = R,R, = 3,000 x 600 

B= 3:000 x 600 
“+ 1,200 at 

= -- 1,500 ohms. 

If f = 6 Me/s, and we decide that A is to be inductive, say wZ ohms, 

ol, = + 1,200 | 
: 1,200 "oe ' 

L = Fax 6X Tos Hennes 
" . = 31-8uH 

and B will be capacitive, say — a. obms. 

1 . — =n = — 1,500 
1 

C= FFX OX 10 x 1,500 84, 
= 16°67 uF. 

c
o
y
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111, In the second case, Ry > R, or Ry = #R, (fig. 47b), and the input impedance will be 

1 o41. 1 
Z~jBt RGA 

1 gA 
— jp t Rea 

(41a) 

(41b) 

Again, xg must be equal to 2 , and its i imaginary part must vanish, ie. 

1__ 
R, R2+ A? 

1 . A 

and ja —rez+a=° 
Hence 

_ Re +A? Ry = “a 

A? = RR, + R,? 

Substituting R, = *. 

n—-lie 
A? = a R,? 

n— 1 
A=+ v. 7 Ry 

and 

1 A 
7B RF AB | 

_ Ri + A? B= — ~~ 

Inserting the above value of A, 

B=- fo ~F in— 1 
As before, A and B are of opposite sign and 

AB = R,R, 

Example—lIf R, = 120 ohms and Ry = 600 ohms, 2 = 5 

B i 

“ 

A=-+ RX | 

ey + 300 ohms 

== ++ 240 ohms, 

(41d) 

(41e) 

(41£)
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Let A = ol, B= — sw =n X 6X 1M, 

240 

= an ote 

= 6°37 ud. ; 

— <=, = — 300 

108 

C= 0 x dn co eF 
== 88°5 uF. 

Symmetrical T and [1 units 

112. Having shown the method of deriving the matching conditions in two of the simplest 
cases, we may now describe briefly certain other arrangements. Fig. 
T, and fig. 48b the symmetrical II networks. In each case we have three reactances each having 
a magnitude of A ohms. The sign of each of the series reactances is the same, but opposite to the 

48a shows the symmetrical 

_tJA_- +JA 
O- —} ° ° O 

+j4 
of. 

Le, 

(a) Symmetric T unit 

#JA 

° O © 

.) QO | 
+54 t 7A 
9 9 

© O 

(b) Symmetric TT unil 
Fic. 48, Cuap. XV.—Symmetric matching units. 
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sign of the corresponding parallel reactance. Such a network is equivalent electrically to a 

} length of transmission line of surge impedance A ohms. Hence the required reactance ‘is 

immediately found by the relation A = +/R, Ry. 

Unsymmetrical T and TI units 
113. These are shown in fig. 49a.and fig. 49b respectively. In each case we have three re- 

actancesA, B,C. Let Ry = wR,, where m may be greater or less than unity. Then in the T unit 
if A = aR,,, B= = bR,, C= = cR,, the numerics a, b and care interdependent. Ifa suitable value is 
selected for C and therefore for ce. 

b=--—¢ +4 ” —1 : 

In choosing the value for c, therefore, it is essential to make it greater than 4/x. When. c= 4/n 
the circuit becomes symmetrical. In the unsymmetric II unit, we have A = aR,, B = bR,, 

om jA o JB of ro) 

oO 

vid 

. e) 
o 

(a) Unsymmelric T unit 

o— . , 78 0 

} 

j4 je 
ro) 

© 2) 

(b) Unsymmetric TT unif 
Fic. 49, Coap, XV.—Unsymmetric matching units. 
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‘C = cR, as before. If the value of B is suitably s selected, then, the values of a4 and c are related to } 
as follows. 

—_— 
aban — 8 

— b 

Ltn 
ie. if 6 = 4/n the network becomes symmetrical. Hence b must be less than 4/n. 

Tt — 0 network 
114. This is shown in fig. 50. It possesses the folowing important property. If the reactances 

A, B,C, Dareso ‘chosen that A +B+C=0, and— apa - n, so that D is of opposite sign 

to A, and B to C, the network is equivalent to an ideal transformer of turns ratio . Thus if an 

\T,o— o jp o re) ja o- —oTs 

jo) Ie 

T° — —° Ig 

Fic. 50, Cuap. XV.—T ~— IT network. 

aerial of resistance R, is connected to the terminals Ts, T,, the input impedance at T, T, is n?R,. 

To match the aerial to the line therefore, we must make #?R, = Ry, orn = Jkt 
A 

Annulment of capacitive reactance of load 

115. If an aerial is connected to a feeder line in such a manner that a current node exists 

at a point in the aerial within a distance oft from the junction of line and aerial, the latter 

offers capacitive reactance as well as resistance and can be represented by an impedance. 

R, +5 +, ohms, or by an admittance G ++ 7B, ohins, where 

G= a*C?R, 
~ T+ otC?R? 

ee aC 

Be= TE OtCTR,? 
= aC’,
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where C’ is the effective shunt capacitance. Thus we may annul the reactance of the aerial by 

connecting, in series, an inductance L= — , or, in parallel, an inductive susceptance —_ where 

1. — oC = oc - 

ol’ ” ~ 1+ w2C? R,? 

,  1+o?C? R? 
or L’ = aC 

1 

=a + CRs 
116. If the matching is performed by means of an L, II or T network, there is no necessity to 

add a physical inductance in this manner, for the actual capacitance C may be considered to form 
part of the matching network, the constants of the latter being adjusted accordingly. 

Example—Suppose the aerial to be terminated at.a point such that at 6 Mc/s its impedance is 
100 — 7 25 ohms. 

1 
oC = 25 . 

C= ! farad 
(2x X 6 X 108 X 25 

= 106peF. 

To annul this we may use a series inductance. 

25 . 
L= Bae SK 198 henties | 

= 0-66yH. 

The equivalent shunt capacitance is ies =C'. 

Ca 106 = 10° 
1 + (22 x 6 x 10% x 108 x 1072" x 100)? 

_ 106 
1-16 

= 91-5yuyF. 

and this may be annulled by a shunt inductance 
en 1-16 

(2% X 6 X 108)? x 106 x 107? 

= 7uH. 

Annulment of inductive reactance of load 

117. If the aerial is so connected that a current loop exists in it, within a distance of ‘ 

from the feeding point, the aerial offers inductive reactance and its impedance is R, + jo ohms. 
Its admittance is G — 7B, where 

_ Ra _ 
G= Rye + wl? ; 

oL 
B, = R2+ wl.
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_ Thus by connecting a capacitance C in series with the aerial, its inductive reactance may be 

annulled. The value of C is obviously <ap Alternatively a capacitance C’ may be connected in 

parallel, its value being given by | 

Again, instead of adding a physical component to the aerial itself it is possible to insert the 
required reactance in the last member of the matching network. Thus, no matter at what point 
an aerial is terminated it is always possible to ensure that its input impedance is purely resistive 
and suitable for matching to a non-reactive line. 

Quarter-wave matching 
. 118. We may now explain the theory of quarter-wave matching more thoroughly. Suppose 
a transmission line to have a surge impedance of Z, ohms and to be ultimately terminated by an 
impedance Z, = nZ,. It is therefore necessary to insert some matching device between the line 

and the load. A section of line 7 long, of surge impedance Z,', terminated by an impedance Z,, 

input j . 40)" _ (Z')* Poe - has an input impedance Z, = a If Z, = nZ,, Z, = az. and if Z,’ = «/nZ,, 
. x ) 

_ (Zo _ lz)? _ 
4= "7, nz, 7 

< A ~ « 4 > 

Twin wire transmission line, <> Terminal. 
Surge impedance J wird, load = 

Wwlg 

Twin wire @<) 
transmission line 
surge impedance =Z, 

fa) 

A rf C 

Twin wire Transmission are an line Terminal iF npedance - 
me area Ne of surge impedance > load = 

0 = Z NW, 
. Ln 0 0 

Twin wire (w>1) 
transmission line 9 _*———— A —_—_— 

surge impedance =Zy 4 ~«. A _ 

_  &) * 
Fic. 51, Caap. XV.—Quarter-wave matching.
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Thus, if at length of line, of surge impedance Z,’ = Vn Z,, is inserted between the actual line 

and the load proper, the line is terminated by an impedance equal to its surge impedance, which 
is what is required. 

119. If # is less than unity, Z,’ must be less than Z,, and this may be achieved simply by 

reducing the spacing of the line over the final - 7 lenath, as shown in fig. 51a. In effect this last 

section is a part of the aerial system in that ‘e carries a stationary wave, whereas in the line 
proper stationary waves should be entirely suppressed. If is greater than unity, this method of 
matching would entail an increase in the spacing, and consequently to increased radiation from 
the line in transmission, and greater pick-up in reception. It is then necessary to adopt an 
artifice, and arrange the feeder as in fig. 51b. The input impedance of the section BC is 

2 
=. = 22, and we are back to the original problem (n<1). If the surge impedance of the 

\e 
section A B is Z,’ the input impedance of this section is (Zo) . and we require this to be equal Zq 
to Zg, i.e. 

n(Z,')? 
Zo 
Ly = 

=Z, 

Zo ‘ - 

. Jn 
If these conditions are achieved, the line will be matched at the point A, and the portion A C 

ta 

becomes in effect a part of the aerial, carrying a 5 portion of a standing wave. 

Example—A load of (a) 120 obms, (6) 3,000 ohms is to be matched to a 600 ohm line. Find 
the required conditions 

(a) Here Z, = 120, = nZy, Z, = 600, » = 1 We therefore require to insert a A section, of 
5 4 

; ,. fi 600 
surge impedance Z,’ = J 50 = ay aa 268 chms. 

(6) Here Z, = 3,000, Z, = 600,» = 5, and the line is arranged as in fig. 51b. The surge 
impedance of the part B C is equal to that of the line proper, namely, 600 ohms. The portion AB 
will, however, be of such a spacing that its surge impedance is 268 ohms. - 

Loop matching 
120. If a pair of transmission lines is incorrectly. terminated, the standing waves in the line 

may be as shown in fig. 52. Then at a current minimum, e.g. at A, the input impedance, looking 
towards 7, is purely resistive, say x ohms, and 7 is less than 7 9 Atacurrent maximum, e.g. at B, 

a - meme ene eee reer retest cme meee rere nnn i sol nt Seleiatenetataieteneieneeiaianenanenanayt hiaes ae 

‘ ° “fe. a t ~ va 

1’ ¢ ‘ s ‘ s ‘ 
( oa H ‘ / 

? \ ¢ ‘ / 

‘ ’ \ is ' \ ; 
' ’ . ¥ ! \.. 7 
! , A % 4 ' / \ a i . 

{ é \ a A \ , 

t 4 . ‘ ‘ ‘ 
4 td 4 ‘ ‘ 

t va bo od 4 . ‘ 
t ra NN / t ‘ ‘. 4 

eae sa te ! ! e : 
(oer we ee ewe eee ape eee ee | bmn nnn nn nnn eee ee ee 

1 1 ' 
L i rm l 

1 ! ' 
' ‘ 
1 ! i Tr 

H 4 ! 

Fic. 52, Cuar. XV.—-Impedance at various points in transmission line.
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the input impedance is purely resistive, say R ohms, where R is greater than Z), R and r being 
related by the equation rR = s *, At any intermediate point, e.g. at X, the input admittance is 

complex, say G + ‘gB = - 5 ye and it is possible to match the line up to the point X 

(approximately) by connecting a susceptance of — 7B ohms so that the line becomes non-reactive 
at the point X. 

121. It has already been shown that the input impedance-of the section of line of length /, 
between X and Z,, is 

Laz Zz cos sl + 72, sin pl 

*"“° Z, cos pl + 9Z, sim Bl 
and its admittance is 

1 ~Y,= Z, cos fl + jZ, sin pl 

Z, Zo (Zr cos Bl + 72, sin A 

Rationalizing the denominator 

Y.= 1 2Z,Z, (cos? pi + sin® Bl) + 7 (222 —Z 3) sin Bl cos pl 

~ Zo Z;? cos® Bl +- 2, sin? pl 

If the matching is to be achieved by the addition of a purely susceptive device, the real part of the 

(42) 

admittance must be equal to = 
0 

Le. 
1 1 ZZ, 
Zo Ly Zr* cOS* Pl + Zy* sin® pl 

or , 
1 : r 

Z,  Z,*cos* Al + Z,* sin® pr . rere (48) 
If Z, = "Z,wehave / 

1 nL 
Zy -n®Z,2 cos® Bl + Z,8 sin? Bl 

1 1 RTT te 

To solve this we observe that if tan?0 — m, sin?@ = m cos®6 and m sin®@ + sin®6 = m* cos?@ 4+- 
sin?6, 

So that if 2? cos? pl +- sin? pl = n 

n sin? Bl + sin? Bl =n 

sete ap 
“. sin® 61 = at 

1 (48) 
2 —_— cos? pl = wai 

tan? pl=n 

It follows that there is a value of #/ in every quadrant of 3 radians which will meet the required 

condition. If 2’ is the lowest. value of / which will do this, the above equation may be written 

ma 
t= “3 +1’, where m is a positive integer. 

* 

Q
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Fic. 53, Cuap. XV.—Physical meaning of / = + I’. 

This result may be translated into a physical picture of the feeder, fig. 53, in which A, B, C, D, 
etc., are possible positions for the matching impedance. 

"122. We must now consider the effect of the value of m. If » is less than unity, sta? Bl’ 

(= cH) must be less than 4. Then, sé fJ’ is less than -707 and fl’ less than < Since 

p= 22, ary <t <7 means that 7’ must be less than. There will be a-current maximum at the 

end of the line, and 2’ must be within the shaded areas of fig. 54a, i.e. if ~ is less than unity, the 

added susceptance must be applied within a distance of ¢ from a point of maximum current. 

AL A Pap nas ae ar} 
vA 8 Fe A 

4 4 
(b)v>1, current minimum af 2, 

\ Fic. 54, Cuap. XV.—Positions of matching susceptance 
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If » is greater than unity, sin fl’ must be greater than -707 and the value of fl’ must be between 

Zand 3 . Hence /’ must be between and 4 . The end of the line is a current minimum and 1’ 

must be within the shaded areas of fig. 54b, i.e. if # is greater than unity the matching susceptance 

must be applied within - of acurrent maximum as before. Thus we do not need to know whether 

Z, is greater or less than Z,, provided that we measure J’ from a current maximum. It has already 

been shown that the ratio ja ig equal either to ” or -, and as it does not matter whether # is 

greater or less than unity, the practical method is to measure Pa and call this ratio #. 
max 

Substituting this value in equation (45) will give a value for sin® £1 and therefore for /, fixing the 
possible positions at which a matching susceptance must be applied. It will be seen that there is 

' a choice of positions. Before dealing with these, we may find the value of the matching 
susceptance By. This must be equal in magnitude but of opposite sign to the imaginary part 
of equation 42, 

_ 9. (2? — Z,%) sin fl cos. fl 
Zy Zr*cos* pl + Z,? sin? pl 

3 

1 Le) _ 1| sin pl cos Bl 
7 . 

° G) cos® Bl +- sin? pt 

1 (? — 1) sin Bl cos Al 
Zo 1 cos® Bl -+- sin? Bl 

1 (1 — *) sin Bl cos pt 46 
Z, “wPcos® Bf sin? Bl’ . ve a .- (46) 

since we need only consider the case when <1. Now’'sin fl cos p} = sme pl and sin 2 fl may be 

either positive or negative. Iti = i’, 2 pl cannot exceed-j and the sign of siw 2 f2 will be positive. 

i.e. jBy = 

B= 

i 

This also applies if? = mx +- i’. Under these circumstances By will be a positive, i.e. capacitive 
susceptance. If, however, 1 = mx — i’, By becomes negative, corresponding to an inductive 
susceptance. 

123. If the matching reactance is placed on the input side of a current maximum, therefore, 
it must be capacitive, while if placed on the opposite side it must be inductive. This is shown 

Ce i ee a 

A ~
 

Fie. 55, Coap. XV.—Nature of matching susceptance,
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_ If we decide to add inductance, 

CHAPTER XV.—PARA. 124 

diagrammatically in fig. 55. The magnitude of the matching susceptance will now be found. 
From equation (46), 

1 (1 — #*) sin Bl cos pl 

Bu ~ Zy n¥ cos* pl + sin? fl 

* 297 _% 27 and from equation (45), sin® Bi = ALT cos* pi aay | 

| yn ' 8 ge 
1 — at) WA x 

By = ( ) Tn +1 /n +1 | 

1 " 
2 

a(n 5 +574) . 
which simplifies to 

1—n 
R= — .: . a e se . a 47) «= AZ, ( 

For example, if » = 0-16, Z, = 600 ohms, By — —-—-2"!8  — 9.0035 siemens (mho). At 
oes /0-16 x 600 

a frequency of 2 Mc/s (w = 4a X 104), By = aC or. 
Suppose we decide to add capacitance, 

C= 0-0035 _ _0-0035 
o 4n x 108 

= 278 puF. 

farads 

1 
~~ 0-00035 a 
_ 1 
~ 0°00035 x 4x x 108 
= 22-8 wH. 

124, In practice the matching inductance or capacitance is usually added by means of a 
section of line, either on open or short circuit, as explained in paragraphs 86, 115 et seq. It will be 
found that by a judicious choice of the side of the current maximum upon which this line is 
connected, it is always possible for these additional ‘‘ matching lines’, as they are called, to be 

less than Z in length. Thus, continuing the above example, we will calculate the position of the 

added susceptance. From equation (45) 

tan Bl = 4/n = »/0-16 = 0-4 
and from tables we find 0:4 = tan~1 21° 48’. 

Converting to radians, 

L 

henries 

21-8xa_,. 
21-48 degrees = —50 radians 

,__ 2m, 21°82 
BY = Tl = 9 
Pex 21-82 xe A 

~~ 180 2a 
= 0:06052.
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Now suppose we decide to connect the matching line on the output side of a current maximum. 
Then By must be inductive. From paragraph 86 we find that the susceptance of a short-circuited 
line of length /, is oo 

1 
By=— Za cof Bh, 

But By = —~J=* 
a” Z5 fn . -~ 

and the length J, must be such that - / SS 
1—n 

cot pl, = —= Bl, Va 

Continuing the example, » = 0-16, Jn = 0-4, 

cot fl, = a = 2:1. 

From tables, fl, == 25-45° 

Qn, 95-45 x a0 
, ja= 180 

25-45 .x a A 

4 = ——g9 — * an 

Note that J’ gives the distance, measured from a current maximum towards the output end, at 
which the loop must be placed, while Z, gives the length of the short-circuited loop of matching 
line which must be added. 

125. Let us now find what must be done to achieve capacitive matching. The distance 1’ 
will be the same as before but must be measured from a current maximum towards the transmitter. 
The susceptance B, of a short length /, of open-circuited line is, by equation (31), paragraph 86, 

1 

Equating as before, since By =~ quating as before, since By Zn’ 

_ i—n 
ian pl, = Bh = _ 

= 2-1 mar 

From tables, fly = 64-5° ro 

Qn, _ 64-5 X a Ne 
A?" 180 

1, = 0-179, | , 

To avoid the necessity for these computations, however, fig. 56 has been developed. For any given 
value of #, we may read off the necessary length, either of closed (/,) or open (/,) matching line, 
from the dotted curve and top scale, and the distance /’ from the current maximum by means of 
the full-line curve and the lower scale.
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CHAPTER XV.—PARAS. 126-128 

126. The foregoing theory assumes that the feeder line is terminated by a purely resistive 
impedance. In practice this may not be the case, but it can be shown that provided the datum 
point for measurement is a current maximum, the actual calculations are exactly as for a resistive 
termination. This is because if the line is otherwise terminated, all the current maxima and 
minima are shifted equally along the line. 

Practical application of loop matching . 
127. The application of the above theory to the matching of an aerial array is as follows. 

The array itself will usually consist either of half-wave or quarter-wave (electrical) elements, 
although their actual length may not exceed -464 and -234 respectively. The transmission line 
may be a pair of conductors, supported upon poles as high as practicable above the ground, 
and clear of all irregularities of terrain. It is essential that the insulation at the points of support 
shall be maintained at a very high value, for a lumped leakage conductance at any point constitutes 
a change in the electrical character of the line and gives rise to reflection, with a consequent 
production of quasi-stationary waves, thus leading to both heat losses and undesired radiation 
from the feeder. For the same reason, the conductors should be symmetrical with respect to 
earth, the transmitter and the aerial array, and sharp bends must be avoided. 

128. The first step in matching the array to the line is to energize the line, and observe the 
stationary waves in the latter. A suitable arrangement for this purpose is shown in fig. 57. It 
consists of a thermo-ammeter reading 0-120 milliamperes, which is mounted in a loop circuit ; 
this loop may be suspended from one of the conductors forming the transmission line. The size 
of loop shown is suitable for an input into the line of the order of 1 kilowatt. The line is energized 
at a reduced input and the loop is drawn along it, and the current reading observed, field glasses 
being of assistance in this process. The current maximum at the point nearest the array is then 
selected for particular observation, and the power increased until the ammeter gives nearly a 
full scale deflection. The exact position on the line of the current maximum should be marked, 
and the actual scale reading, I ».., noted. The loop is then drawn along the line to the adjacent 
minimum, the current, J,4,, being noted and its position marked, Especial care must be taken 

———— 

a ~ 
a 2 eee : 

he 10 approx fo | 
5" 

approx, 
Stiff copper PP 
wire (N° 10 sw. 
‘28 diameler 

Front view Side view 
Fic, 57, Cuap. XV.—Ammeter and transformer for matching purposes. 



CHAPTER XV.—PARAS, 129-131 
in reading the minimum current since the lower part of the scale is very cramped. At this point 
it is advisable to change the ammeter over to the other conductor and verify that the currents 
along both lines are equal and that the maxima and minima are in the same positions in each 
line. If this is not so, the line and the input termination should be examined with a view to the 
elimination of any out-of-balance effects, as it is hopeless to attempt to match an unbalanced line. 
The distance between adjacent maximum and minimum positions should also be checked. This 
should be between -234 and -254. When all is satisfactory a final check of J,,, and [,y, will 

give the ratio oe =n. 

129. Referring to fig. 56, we now locate the position of the matching line by means of the 
curve marked “ Position”, e.g. if 2 = 0-3, reference to the left hand half of the diagram shows 
that matching may be achieved by means of an open line, distant -0804 from the current 
maximum, on the side nearer to the transmitter, or by a closed loop -080A from the current 
maximum on the side nearer the aerial. Note that the bottom scale is to be read. Reference to 
the “ Length” curve will now give the length of the matching line ; in the example given, = 0-3, 
and reading from the top scale of the diagram, we find that an open line of - 1444 or a closed loop 
of - 1084 will produce the desired effect, the respective positions being of course on different sides 
of the current maximum. 

190. The choice of open line or closed loop must be governed by local circumstances. For 
instance if » = 0-8, we obtain from the closed loop curves a value of 0-1164 for the position and 
0-214 for the length, while from the open line curves we obtain 0-1164 for the position and 0-044 
for the length. If the wavelength is great compared with the height of the line above the ground, 
it may not be convenient to attach a loop of 0-214 to the line, whereas an open line of 0-044 may 
be only a few feet in length and easily suspended from the line. Whether open or closed matching 
lines are used, they must be perpen jcular to the transmission line, otherwise interaction will 
occur between the transmission and matching lines and will give rise to losses, 

131. (i) When the matching line has been attached to the transmission line the ammeter 
should be drawn along the latter and the maximum and minimum readings again taken ; » should 

now approach unity. If # is less than 0-833 ( >1 2) a slight adjustment of the position of the 

matching line, or of its length, may improve matters, but an alteration of only an inch or so at a 
time should be made. If the position of the maxima and minima have interchanged, over-correc- . 
tion is indicated. Typical readings for an aerial consisting of a single dipole are given below. 

Maximum current = 0-114 amperes 

Minimum current = 0-031 amperes 

m= *272 

Position of matching impedance = 0-0784 Ce 
Length of loop = 0-14, or 

Length of open line = 0-154 - 

The ratio of maximum to minimum current after matching was 1-14. 

(ii) Even where matching at the aerial termination is performed by some other method, loop 
matching lends itself to the compensation for the lack of uniform capacitance per unit length of 
line. This lack of uniformity always exists to some extent because the line must in practice be 
supported by insulators having a permittivity greater than that of air. At frequencies of the 
order of 3 Mc/s the effect may be insignificant, but it will probably be appreciable at frequencies 
above 10 Mc/s, particularly on long lines. The symptom of such lack of uniformity is that whereas 
the ratio of maximum to minimum current over the first few half-wavelengths from the aerial 
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CHAPTER XV.—PARAS, 132-134 

end may be quite near to unity, quasi-stationary waves develop at more remote points, the : 

mis-matching becoming more serious as the transmitter is approached. The remedy for this state 

of affairs is to add additional matching loops at intervals in order to maintain the a ratio 

as near as possible to unity along the whole length of the feeder. 

Suppression unit a 

132. It has been stated that a length 4 of loss-free conductor acts asa perfect 1:1 ratio 

transformer while a loss-free length of acts as a perfect transformer of ratio — 1:1. Although 

a conductor cannot be entirely loss-free, if it is arranged in such a manner as to be practically 
non-radiating, its loss will be almost entirely due tb joulean heat and may be very small. It is 
possible to approach the desired non-radiating property by folding the conductor symmetrically 
as shown in fig. 58a and fig. 58b, in which it will be observed that the total length of wire is double 
the actual distance between the input and output terminals. A feeder arranged in this manner is 
sometimes called a “‘ suppression unit”. In fig. 58a, the feeder is required to act as a 1:1 trans- 

former and the total length of wire is one 4. It is bent rectangularly at intervals of x forming a 

kind of chequer pattern in space. Similarly in fig. 58b, we have a length 5 of conductor bent into 

24 rectangular loops at intervalsof 4 , the whole acting asa — 1:1 transformer. It is recommended 

that where this expedient is adopted the number of bent portions shall never be less than 24. The 
velocity of the wave along the wire is probably at least 10 per cent. less than in free space and 
the theoretical length of conductor should be reduced by this factor. 

133. As an example of the use of such a feeder, let us consider the problem of feeding two 
‘parallel vertical dipoles, with syn-phased current from a twin-wire transmission line. Ifinstead 
of being parallel, they are arranged co-linearly as in fig. 58c, they could be fed directly from the line 
through a suitable matching device. If however the lower aerial of the two is turned upwards so. 
that the dipoles are parallel instead of co-linear (fig. 58d), it is seen that the currents in the two 
aerials are in opposite directions, and the desired polar diagram will not be obtained. Some form of 
— 1:1 transformer must therefore be inserted in one of the aerials, and the only question is the 

form it shall take. If the parallel dipoles ates apart the most obvious method is to use a single 

A 

2 
properties and consequently the power to be supplied from one side of the line will be considerably 
greater than from the other, i.e. the aerial system is unbalanced. Nor is this all; unbalanced 
currents must flow in the transmission line and consequently this will also radiate. The final 
result may well be that the polar characteristics are very different from those aimed at. 

length of horizontal conductor as in fig. 58e. This conductor will however possess radiating 

134. An alternative method of feeding is shown in fig. 58f, in which the output terminals 

T, T, of the matching network are located as follows. From the aerial A, draw an arc of radius 2 
a 

_ A, . 
and from B an arc of radius z° Then T;. T, are to be located at the intersection of these arcs. 

From the output terminal T, to the aerial A we may now connect a one-A section of non-radiative
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feeder as described above, which will behave as a 1: 1 transformer, and from the output terminal 

T, to the aerial Ba ; section giving a transformation ratio of — 1: I. The arrangement is then 

as shown in fig. §8g. The two aerials will then be energized in syn-phase and will give the required 

polar diagram, i.e. A5of fig. 8. The same method may be adopted for any aerial spacing up tow A, 

a es 

radiating feeder is often used to feed the vertical radiators in the Franklin uniform array, and also 
in conjunction with multiple unit series phase arrays. 

_ PRACTICAL TYPES OF AERIAL ARRAY 

135. The simple broadside array consists of a number of aerials spaced at uniform distances 
along a horizontal line and fed in such a manner that all the currents are syn-phased. The width 
of the array, in wavelengths, is called its aperture. Fig. 59 shows the effect in the horizontal plane 

of an increase in the aperture of an array consisting of vertical dipoles spaced 4 apart. Each 

dipole is assumed to carry the same current, J, and the effect of mutual impedance between the 
various members is neglected. It will be observed that with » dipoles the field strength in the 
direction perpendicular to the line of the array is » times that given by a single dipole. To obtain 
this increase with a single dipole the current must increase to »J, and the power input would be 
proportional to (wZ)?. With the array of » elements, however, the power input to each is 
proportional to I?, and the total power input to #J*. The improvement of the array over a single 
dipole may be obtained from the ratio of powers and is obviously equal to ». In other words, to 

give a certain field strength in the required direction, an array of m elements requires only= 

of the power which would be required by a single dipole to give the same field. 

186. It must be emphasized that the improvement shown in fig. 59 can only be obtained by 
an appropriate increase in power supply. In order to bring out this point, fig. 60 has been 

. prepared. This shows the horizontal polar diagrams of various arrays.consisting of from one to 
eight elements as in the previous instance. but with the same power input in each array. The 
improvement .is now proportional to 4/ instead of tom. The effect of mutual impedance between 
the members may cause the improvement to be slightly less than 4/7, but the shape of the polar 
diagram is very little affected. The shape of the vertical polar diagram of such an array is given 
by the Current Distribution Factor for a single dipole, multiplied by the reflection diagram 
appropriate to the earth in the vicinity. The scale is dictated by the same considerations as 
that of the horizontal polar diagram. 

_ 137. The effect of a suitable reflector curtain is shown in the next diagram, fig. 61, in which 
each energized element is supposed to carry the same current. The effect of the reflector is to 
double the field strength in one of the two directions perpendicular to the array and to suppress 
the radiation in the other. This diagram is the theoretical one obtained with a reflector dipole 

placed + behind each, energized dipole. Actually, it may be found desirable in practice either to 

‘detune the reflector wires by making them a little longer or shorter than the energized members, 

_ or to use a separation other than 3 between energized and reflector wires. Both methods may, 

of course, be used in conjunction. 

| 138. In order to. obtain a low angle for the main beam, the lower ends of the vertical members 

should be as high above the ground as possible, and in any case not less than Ms Allowing for the 
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. CHAPTER XV.—PARA. 139 

sag in the triatic stay from which the wires are suspended, this means that the masts supporting 

an array of this type must be about 3A in height. This is one of the practical disadvantages of 

this form of array for service purposes. Another disadvantage is the difficulty of feeding. Ifa 
feeder is attached to the lower end of each element of the energized curtain, i.e. at a voltage loop, 
the input impedance is of the order of 3,000 ohms, and an impedance matching device must be 
inserted between the feeder and the aerial element. The aerial itself is an unbalanced load, so 
that the alternatives presented are (i) to use a concentric feeder and some form of matching 
network (ii) to use parallel-wire transmission lines in conjunction with a transformer. As all the 
feeding points must be energized in phase, matching must be performed at a large number of 
points, or else a comparatively high degree of mis-matching accepted. 

Tiered arrays 

139. If masts of sufficient height are available, it is advantageous to arrange tiers of vertical 
radiators, one above the other. This results in an increase in field strength in the required direction 
and also gives increased directivity in the vertical plane. The problem of feeding the array also 
becomes somewhat simpler from the purely theoretical point of view, provided that the elements 

to be fed are apart. It has previously been shown that a $ length of loss-free transmission 

line acts as a perfect —1:1 transformer. It is therefore possible to arrange the feeder in the 
manner shown in fig. 62, alternate elements being voltage fed from opposite sides of the feeder 
line. The voltage distribution along the feeder is then as shown by the dotted lines, and the 
current distribution in the elements as shown by arrows. This method of feeding is. an obvious 
development of fig. 58c, but in the present instance, instead of a single unbalanced conductor, 

Fic. 62, Cuap. XV.—Array of vertical dipoles. 
1
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there is a twin resonant feeder line between each pair. of feeding points. This feeder does not 

radiate appreciably and the load is very well balanced. If the bottom of the array is to be A 

above ground, the masts supporting it must have a height of about 24, and the feeding point will 
be one 4 above ground. The mechanical difficulty of fitting and adjusting a matching device at 
this height above ground is such that the arrangement is rarely adopted. 

Sterba array . 
140. The Sterba array is shown in fig. 63. Each unit consists of a single continuous conductor 

which is supplied with current at the appropriate frequency. The half-wavelength sections are 
arranged vertically and horizontally in an: alternative manner, so that all the vertical wires 
‘carry current in phase, and set up radiation, while the horizontal sections are so arranged that 

le Mo 5 

Bn nnn te pene ee epee 
a ‘ ee inde 

2. 

Fic. 63, Crap. XV.—Sterba array. 

they are non-radiative. The feeding points are at the current loop of one half-wave section, the 
unit is thus offering minimum impedance, i.e. it functions as an acceptor circuit. A number of ' 
units are erected side by side and fed with syn-phased currents by transmission lines via suitable 
matching devices. A similar array about a quarter of a wavelength behind the energized array 
willact asa reflector. The object of this arrangement is to allow a direct current to be fed through 
the radiator wires for the purpose of thawing any accumulation of snow or ice, suitable filtering 

_ devices being incorporated in the matching unit. Where “ de-icing ’’ is not necessary, the Sterba 
array offers no particular advantage over the simple broadside array. 

End-fire array 

141. An end-fire array differs from a broadside array in that there is a progressive phase. 
difference between the currents in adjacent aerials. If f is the difference in phase and d, the 

spacing, 4 = £. The effect of this phase progression is to cause the radiation in the horizontal
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plane to be concentrated in a main lobe together with small subsidiary lobes, the main lobe being 
directed along the line upon which the aerials are situated. Whereas the broadside array is 
bi-directional, the end-fire array is unidirectional, so far as the main lobe is concerned, the 
radiation heing directed towards the end at which the phase is lagging. The radiation in the 
vertical plane containing the array is more or less concentrated in a direction near the horizontal . 
plane. The series-phase array described later is a particular example of this type. 

Arrays of horizontal dipoles 
142. Although the horizontal dipole gives no radiation along the earth’s surface, it is found 

to be quite effective for long distance short-wave communication, and arrays consisting of 
horizontal doublets are now in extended use. They offer the theoretical advantage—which is 
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Fic, 64, Cuap, XV.—Array of horizontal. dipoles, 

borne out in practice—that the array is intrinsically much better balanced with respect to earth 
than an array of vertical elements. For the shorter wave-lengths, quite a serviceable array may 

be erected on 70 feet masts although, of course, higher ones are desirable for reasons already 

given. A-very simple form’ consists of four 5 dipoles arranged as in fig. 64. The lower pair are 

connected directly to the terminals of the matching device, and the upper pair, which are ; 

2 
%
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A 

2 
transformer. It follows, therefore, that the feeding points must be taken from the sides of the 
transmission line opposite to those from which the lower side is fed. As a rough approximation, 
the radiation resistance of the arrangement may be taken as 4 times that of a single member less 
about 17 per cent. due to the effect of mutual impedance between the various members. If the 
lower pair are one-half wavelength above ground, the radiation resistance of each member will 
be about 73 ohms, and the total radiation resistance of the order of 240 ohms. A reflector curtain 
may be used in conjunction with the energized curtain in order to concentrate the major portion 
of the radiation in the required direction. It is convenient to use a reflector aerial parallel to 

above the lower, are fed by means of a 5 length of twin transmission line operating as a —1:1 

each energized member, the spacing being - and the length of the reflector about 8-5 per cent. 

greater than the energized member. The latter are usually 5 per cent. less than 4 so that the 

reflector wire has a length of about -524. If only 70 foot masts are available, allowing 10 feet 
for the sag in the triatic which supports the whole aerial, it is seen that the longest wavelength 
for which this aerial can be built is about 18 metres. 

143. -The effect of a reduction in the height of the lower members is of importance, and is 
very easily found to a good approximation by the use of fig. 8, and the methods explained in 
paragraphs 18 and 19. There is no need for extreme accuracy where only the angle and 
approximate magnitude of the main lobe is required. To illustrate the point, the vertical polar 

diagram of the four-element array has been derived, first, in fig. 65a, for the lower members 3 

above earth and second, in fig. 65b, for the lower member at a height of ; In the first diagram 

Fig, 65, Cuap. XV.—Vertical polar diagrams, arrays of horizontal dipoles. 
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the fine dotted-line curve corresponds to fig. 8 A 5 (parallel dipoles 5 apart with syn-phased 

current) and the chain-dotted curve to fig. 8 E 13 (parallel aerials 3, apart, with currents in 

anti-phase) or toh = 0-754 in fig. 21. The product has been obtained for only four or five points 
and the full-line curve drawn. In the second diagram the fine dotted line is diagram A 5 of fig. 8 
as before, and the chain-dotted line is obtained from fig. 8 E 9 (parallel aerials 4 apart, in anti-phase) 
orh = 0-5Ain fig. 21. The product is shown in fullline. It is seen that in the first case the angle 
of the main lobe is about 18° to the horizontal, but that the field at an angle of only 4° is quite 
appreciable. - With the lower aerial, however, the angle of the main lobe is about 22° and the 
field strength at angles less than 10° is very low. At.a risk of over-emphasis, it is again pointed 
out that a few minutes study of fig. 8 and paragraphs 18 and 19, will give an approximate numerical 
solution of almost any example of this kind and is of greater value than many pages of purely 
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Fig. 86, Cuap. XV.—Radiation in space; array of horizontal dipoles. 

qualitative statements. In fig. 66 the distribution of the field is shown upon a sinusoidal graticule 

for the case where the lower members are ; above ground, corresponding with the vertical polar 

diagram of fig. 65a. This diagram was obtained from the latter figure by rotating it about a 
vertical axis through the origin, and multiplying each radius vector by the-appropriate value of 

o a“ 

cos ( 5 sin ) 
the Current Distribution Factor for a ; dipole, i.e. , where @ is the angle in azimuth 

cos 6. 

through which the vertical diagram has been rotated. The datum, 6 = 0, is the direction in 
azimuth in which the maximum radiation is produced. 

The Franklin uniform array 
144. This array is illustrated in fig.67a in which the radiating membersand reflecting members 

are shown separately. Each radiator is about 34 in height and is doubled back upon itself in a 
sort of ‘‘ Greek key ”’ pattern, in order to obtain an approach to uniform current over the greater 

=
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part of the actual height. This point is further illustrated in fig.67c, which shows the approximate 
current distribution, and it will be seen that the radiation from the ends of each element of wire 
cancels out. As the current at these ends is comparatively small, little energy is wasted in this 
way, but the whole available height is made to carry a nearly uniform current approaching the . 
loop current in magnitude. Where the mast height is sufficient, the actual radiating members 
ate located in the higher portion of each bay, and a folded, nearly non-radiative feeder is used to 
convey the current from ground level to the aerial feeding points. The reflector units are usually 

A 
. 

° 
. 

. 

j 

placed about-7 or . behind the radiators as shown ia fig. 67b, the length of each reflector wire _ 

being adjusted to give the best forward radiation. The aperture of the array depends upon the Ke 
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Fie. 67, CuapP. XV.—Franklin uniform array. 

nature of the service; two, four, six and eight wavelength arrays have been used in different 
circumstances. Although this form of aerial gives very good results, it is practically impossible to 
extemporize, and owing to its high cost, is now being superseded in commercial practice by the 
“series phase array, at all events for shorter waves, i.e. 30 metres and below. . 

The series phase array . | 
145, This form of end-fire array consists of a long wire, which is so bent that a series of vertical 

loops are formed. Each of these loops consists of a~-section of wire doubled back upon itself, 
2 

> These loop are joined in series by horizontal portions and are 

separated in space by a distance of 4 the wire itself being thus continuous throughout its length, 

so that the height of each is C 

The action will be explained with reference to fig. 68. The arrangement of the wire is shown in 
fig. 68a, T,, T,, being the input terminals, to which the feeder line is connected.. It will be observed 

- that T, is actually the earth itself, and the array is of the unbalanced type. In contrast to most 
of the arrangements previously described, the array may be terminated at its distant end T, by 
a non-inductive resistance equal to the effective surge impedance of the aerial, considered merely. 
as a current-carrying conductor; this is about 300 ohms. When so terminated, no standing 

LA
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(b) 
Fic. 68, Caar. XV.—Series phasé array. 

waves are set up in any portion of the array—a point of primary importance. Ifa P.D. is applied 
to the terminals T,, T,, a travelling wave wil] be set up in the wire, moving from left to nght. 
Considering only the vertical portions, it will be seen.that at any given instant the current at all 
points in the section BC will be equal and opposite to that in the adjacent section CD. As these 
are so Close together they may be considered as a single radiator carrying equal anti-phased 

currents, and we have seen that the effect of such currents in a f length of wire is to set up one 

™ 

quarter of a standing wave in the wire. Thus, in effect, the loop BCD acts as a aerial. Similar 

considerations apply to the loops EFG, HIJ, etc. It must be understood, however, that in these 
successive loops the effective standing waves of current: are not in phase with each other. The 
phase difference between any two successive loops will depend upon the length of horizontal 

connecting wire, and when this is—, the standing wave in EFG will reach its maximum a quarter 
4 

ofa rycle earlier than that in BCD and so on. The current distribution at four successive intervals 

of q seconds) is shown in fig.68b. It is also seen that, at any given instant, the current i in adjacent 

horizontal sections is in anti-phase, and consequently the total radiation from these portions is | 

negligible. The radiation resistance R, of a vertical 4 radiator is equal to about 36 ohms, and 

if Jis the R.M.S. current at the base, the power radiated is P =] 2R,. Now each vertical member 

.
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of a S.P, unit acts as a 4 radiator, but its base current is effectively equal to twice the feed 

current. For a given feed current therefore, the power radiated is four times that which would 

be radiated by a~ aerial with the same feed current, and the radiation resistance of each vertical — 
4 

member of a series phase array is therefore of the order of 144 ohms. 

146. The horizou‘al polar diagram of a single-unit series phase array depends upon the number 
of verticalloops. If only two loops are used, the diagram approximates to fig. 8 A 3, i.e. a cardioid 
maximum radiation occurring toward the input end. If the length of the unit is extended with a 
corresponding increase in the number of verticals, the main lobe of the diagram becomes sharper, 
subsidiary lobes of small magnitude being developed. In practice the system is’ sometimes 
extended to a length of 4 to 64, i.e. from 17 to 25 verticals. When so extended, the attenuation 
of the current cannot be entirely neglected. It must be observed that since the radiating elements 
are in series, and each has a comparatively high radiation resistance, the attenuation is very much 
greater than in a non-radiating line of the same length. In the latter also, the whole of the power 
transmitted down the line is absorbed at the terminating resistance. A little reflection will show 
that if the attenuation is very great, the loops nearest the transmitter will radiate well, but the 
remote ones poorly, and the polar diagram will not be sharply directive, while if the attenuation 
is low, the majority of the power supplied to the array ‘will be dissipated in the termination, and 
the efficiency will be very low. Thus, for transmission, there is an optimum length, which is ‘of 
the order of 44 to 54. Under these conditions, the ratio of currents in the first and last members 
may be of the order of 6 to 1, or a power ratio of 36 to 1. The terminating resistance is then 
practically unnecessary. It follows that the theory is more complex than was suggested above, 
in that, instead of a travelling wave, quasi-stationary waves will be set up in the system. 

147. In the foregoing explanation, the lengths of the various vertical and horizontal elements 

; . Thisis, of course, the electrical and not the actuallength. Owing to the method 

of construction, in particular the large number of sharp bends, and to the effect of mutual 
impedance between the radiators, it is found that the verticals should be about -2254 to -234 

. in height and the same distance apart. This is of importance in obtaining the desired ‘‘ end-fire ”’ 
polar diagram. Another point of practical significance is the attenuation of the current in 
successive radiators. If the feed current is J amperes, the ratio between the currents in successive 
radiators being x (<1), and the total resistance of a unit consisting of one horizontal and one 
vertical element is R ohms, the total power dissipated will be 

R {I? + (x2)? + (#°2)? + (x92)? . . . «3 
= RI? {l + 42 4+ 24 + 48: .. . tom terms} 

the final term of the series representing the power dissipated in the terminating resistance. Hence 
the power input to the whole array is 

1— x, 
Tol R watts, 

were said to be 

— 4m 
1—**R ohms. In practice ** is very much smaller than unity 

— 4? 
and, the input resistance 1 

and the input resistance approacl.es the value lox ohms. For instance, if x = -8 the input 

resistance will be — = 2-78 R. As Rmay be about 160 ohms, the input resistance is about 

450 ohms for this particular attenuation. This calculation again ignores the effect of mutual 
impedance, which causes the radiation resistance of each successive member to differ from that 
of the preceding one. 

C)
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. A 
148. The array was originally suspended with its horizontal members at a height of Z 

above ground, but better results appear to be obtainable if this height is increased. The nature 
of the soil under the array is also of importance. Best results appear to be obtained when the 
ground is either very highly conductive or almost perfectly insulating but of low permittivity, 
and the moist earth of the average site in Britain appears bad. There are, however, little data 
yet available in these respects. The frequency toleration of the series phase array is only of the 
order of 2 per cent. This constitutes a considerable disadvantage for service purposes. The 
directivity of a series phase array consisting of 8 loops is shown in fig. 69a,and the vertical diagram 
in fig. 69b. The horizontal directivity can be improved by using two parallel arrays fed in 

‘Fic. 69, Cuar. XV.—Polar diagrams of 2A series phase array. 

x 

syn-phase. These may be 54 apart, for convenience in feeding by means of anon-radiative feeder 

as described in paragraph 134. Two parallel arrays may then be connected, via a suitable matching 
device, to a twin wire feeder, and will constitute a balanced load. 

Arrays used for reception ° 
149. In general, any of the forms of array which have been previously described may be used 

for reception, the directional properties being practically the same for either purpose. Since, 
however, arrays are generally used where the traffic is continuous, it is rarely required to use a 
given array for alternate periods of transmission and reception ; in any case, the transmitter is 
usually remotely controlled and it is most convenient to erect an array for the sole purpose of 
‘reception. It is then obviously uneconomic to adopt arrangements which may be imposed by 
transmitting considerations, e.g. breakdown voltage does not enter into the design of a receiving 
array. On the other hand, correct termination is just as important if not more so than in the 
transmission case, and due attention must be paid to the nature of the aerial, balanced or un- 
balanced as the case may be, in designing the matching units. A single dipole opened at its 
centre for the connection of the feeders has a total resistance of the order of 100 ohms, and may be 
directly connected to a feeder of Z, = 100 ohms. Where the length of line is not too long a length 
of ordinary twisted flex may be used as a feeder, for its surge impedance is of this order. This 
arrangement is also suitable for transmission when the input does not exceed a few watts. As the 
insulating material between the conductors is partly air and partly of cotton, rubber, etc., the 
losses are rather greater than in an open line. 

150. The series phase array is finding increasing favour for receiving purposes, Since the field 
is not uniform in phase over the whole of the array, it is rarely advantageous to extend the length 
beyond about 2A, i.e. eleven vertical loops. In some cases the feeder end is elevated above the 
remote end in order to obtain additional vertical directivity. If two parallel arrays are used they
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may be spaced , apart and connected via a suitable matching device to each side of a twin wire 

feeder line through 4 and 5 

currents are then in the correct phase for connection to the input terminals of a balanced 
receiver, the line being also balanced and therefore practically non-radiative. The signal-noise 
ratio of this arrangement is found to be of a high order compared with that of a single dipole. 

suppression units respectively. At the receiving end the received 

Rhombic array . 

_ 151. This type of array has several useful forms, e.g. a single tilted wire, an inverted V, or a 
horizontal diamond shape. These are all classed together because the same principles are involved. 
The precise form adopted in any given case depends upon the polarization of the incoming wave, 
the direction, the wave tilt, the frequency, the available space and the material available for 
construction. The original form was the tilted wire aerial shown in fig. 70. First, suppose the wire 

Incoming wave. 
direction 

e
y
 
g
S
 

~—# 

To receiver 

Fic. 70, Czar. XV.—Tilted wire aerial. 

to be several quarter-waves in length, erected vertically and connected to earth by a non-reflective 
terminating impedance. If the electric field vector [of an incoming wave is vertical, it will on 
arrival at the aerial induce in any element of length / an E.M.F. JI, and a voltage wave due to 

_ this will travel both upward and downward. The former wave will be reflected at the free end and 
will travel downward to the termination, so that in effect, there is chiefly a voltage wave down- 

ward. Since every elementary wave of strength / originates at a different point in the wire, they 
do not arrive at the termination in phase. The current in the terminating resistance is therefore 
due to the resultant of a number of elementary voltage vectors, and the magnitude of this re- 

A 

2 

if it is a whole wavelength the resultant is zero. If however this one-wavelength wire is tilted 
forward in the direction of the transmitter, any given phase of the electric field vector reaches the 
upper portion of the wire before the lower, and consequently the induced E.M.F.’s in the upper 
portion are advanced in phase with respect to the lower; this phase advancement is obviously 

sultant depends upon the length of the wire. If the length is 5, the resultant is a maximum, and
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progressive as we consider elements further from the termination. If then the tilt is such that the 

upper end is nearer to the transmitter than the lower end, the current vectors due to the various. 

voltage elements will all be in phase. 

152. The angle which the tilted wire makes with the horizontal is thus very important ; 
maximum energy is delivered to the receiver when the base A B.of the triangle formed by the wire 

and the ground is 5 less than the length of wire. For alength J, AB =1— 5, eg. if J = 4, the 

tilt angle g, measured between the wire and the vertical, is sin-1 0-50r30°. Iff= 2,AB= 34 

1:54 
ZA ; 

very slowly, if the length is greater than about 44, and consequently the same aerial is effective 
over a fairly wide frequency range. 

y = sing! = 49° and soon. Asa result of this relation, the optimum tilt angle varies only 

153. In practice, the above form is rarely used because it is possible to obtain better results 
without an appreciable increase in material. The simplest development is to place two similar 
tilted wires back to back forming an inverted V. If one end of this is open and the other connected 
to the receiver (the latter being properly matched to the aerial) the aerial has a broadly bi- 
directional response, but if the free end is earthed through a terminating resistance equal to the 
surge impedance of the aerial, its response becomes practically unidirectional, receiving mainly 
from the direction in which the termination is situated (fig. 71a). The forms shown in figs. 70 and 
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Fic, 71, Cuap, XV.—Inverted V and horizontal diamond arrays. 
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_ 7laare intended for the reception of vertically polarized waves, but experimental results showed 
that the horizontally polarized component of down-coming waves would provide ample field 
strength for long distance reception, while an aerial suitable for such reception would have 
comparatively little pick-up of vertically polarized waves and might therefore be expected to give 
a high signal-noise ratio. As a result the horizontal diamond array was evolved. This is shown in 
‘plan and elevation in fig..71b. In its simplest form it consists of two horizontally opposed V 
sections, similar to fig. 71a, one end of the array being connected to the receiver, and the other 
terminated by a suitable resistance. As in the tilted wire type, the length of each element decides 

the maximum gain of the array. The latter is obtained by making } exceed bv ; the length of 

‘its projection upon the base A B. 

154. In the design of a horizontal diamond array the three variables to be adjusted are l, gy. 
and i (fig. 71b). The angles 6 and 5 are regarded as constant. Then the lowest permissible 
eight is ee : 

n= an 
b= Tain . ~ 

while g is given by 
ue _ Sin p = cos 6 

and for maximum gain 
A 

I= Teint 6 
155. In practice it is found that the greater / is, the wider is the efficient reception band of a 

particular aerial. The optimum value of the terminating resistance, for a high front to back 
reception ratio, is found by trial. The actual conductors forming each inverted V are frequently 
constructed of twin parallel wires, connected in parallel and spaced a few inches apart. By varying 
the spacing it is then possible to facilitate the matching between the aerial and the transmission 
line feeding the receiver. It is also possible by this means to make the surge impedance of the 
aerial uniform at all points throughout its length, and so to decrease the power loss in the aerial. 
-To do this the twin wires are spaced apart at the apex of each V and close up towards the opposite 
ends of the wires. The diamond array may be used for transmission, but little data are available 
as to its performance. The directivity should, on theoretical grounds, be similar to that of the 
Same array used as a receiver. 
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