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CHAPTER XV.—AERIAL ARRAYS AND TRANSMISSION LINES

AERIALS AND AERIAL ARRAYS
Introductory -

1. From the earliest days of radio communication, the advantages of directional transmission
and reception, particularly for the purpose of point-to-point communication, have been fully
appreciated. The earliest attempts in this direction were made at comparatively low frequencies
(of the order of 15 to 30 kc/s) using L aerials having a great horizontal length—some ten to
twenty times the height. Such aerials were very expensive in first cost and maintenance.
With the development of high frequency communication, the employment of highly directional
aerial systems proceeded rapidly. For any energy-radiating system to possess directional
properties, its dimensions must be at least comparable with the wavelength of radiation in the
particular medium. For example, suppose it is desired to radiate a beam of sound waves at a
frequency of 500 cycles per secorid by means of a horn. As the speed of sound in air is about

1,120 feet per second, the wavelength is 1’—}2-0 or 2-24 feet, and the mouth of the horn, if square,

should be at least 2 feet by 2 feet, and if circular or elliptical it should have an area ofat least
4 square feet. In the same way, directional electro-magnetic radiation requires that the aerial
system shall have dimensions of at least the same order as the wavelength, and this requirement
is obviously more easily met at high frequencies (short wavelengths) than at the low frequencies
formerly employed. '

2. A combination of radiating members designed tor the purpose of directional transmission
or reception is called an aerial array. The object of an aerial array is to produce some particular
distribution of field strength in space, according to the nature of the service, the distance of the
receiving station and other factors. The spatial distribution of field strength may be shown by
horizontal and vertical polar diagrams as in the case of single aerials. Aerial arrays are for the
most part employed in long distance point-to-point communication, and for this service the
horizontal polar diagrams should be long and narrow. Since the propagation is dependent upon
reflection from the ionosphere the vertical polar diagram should be such that most energy is
radiated at a low angle to the horizontal, usually between ten and fifteen degrees. It is found
that the apparent direction from which the strongest radiation arrives at a receiver depends
partly upon the state of the ionosphere, and may vary through several degrees from hour to
hour or from day to day. It is therefore not desirable to aim at an extremely directive polar
diagram. At the receiver, a fairly sharp vertical diagram is an advantage, provided that the
optimum angle can be decided, because under these conditions less trouble is caused by echo
phenomena. In general, however, the optimum angle also varies with the time of day, season, -
etc. Certain special types of communication, e.g. ‘ground to air and vtce versa, may require
types. of array very different from those used for long distance point-to-point communication.

3. The properties of any aerial, when used for reception, are in most respects similar to the
corresponding properties of the same aerial when used for transmission. In particular, the
directional characteristic is practically unchanged. The current distribution and effective
impedance are not quite the same because the current is due to a field spatially distributed
over the whole aerial (not necessarily in a uniform manner) instead of an E.M.F. applied between
two feeding points, and the impedance changes slightly owing to an indirect effect of the current
distribution. The fact that the directional characteristic is substantially the same enables the
merits of a given aerial or array for transmitting purposes to be deduced from its behaviour as
a receiver and vice versa.
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Current distribution

4. The current and voltage distributions along an aerial wire were dealt with briefly in
Chapter VII. It is now necessary to discuss the current distribution somewhat more fully.
Consider an aerial suspended above the earth in any manner whatever, e.g. as shown in fig. 1a,
and its lower end to be connected to one terminal of a high frequency generator, the other terminal
of which is earthed. In order to measure the amplitude of the current at different points of
the wire, we may use a thermo-ammeter, inductively coupled to the aerial by means of a loop
of wire. This device is in fact in constant use for the adjustment of aerial arrays, and suitable
dimensions are given later. If arrangements are made to draw this loop along the aerial we
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Fi1c. 1, CHAP. XV.—Current distribution along wire.

may obtain an indication of the R.M.S. current at different points. At the end remote from
the generator, the current in the wire will be zero. As the loop is moved towards the generator

the current increases, and will be found to pass through a maximum at a distance exactly 2
from the open end. It then decreases, and passes through a minimum value at a distance

of %from the end. It will then start to increase again and will pass through another maximum

when the ammeter is f—:l from the end, this maximum being slightly greater in amplitude

than the previous one. If at each point in the wire a perpendicular is drawn, and its length is
proportional to the current at that point the ends of these lines will lie upon a curve as in fig 1a.
This curve then gives the current distribution, so far as its magnitude is concerned, but it will
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give no information as to the relative phase of the current at different points in the wire. If,
however, steps were taken to measure this it would be found that starting from the far end, the

current at all points in a length A B, i.e. over a distance of nearly -%, is very nearly of the same

phase. Over a short length BC, fig. 1b, in the vicinity of the current minimum, the phase
changes very rapidly, and in passing from B to C a total change of 180° takes place. In the
distance C D, the current is syn-phased at all points and is therefore 180°out of phase with the
current in AB. This process of phase reversal again occurs in the length D E, so that the current
in E F is in phase with that in A B, but opposite in phase to that in C D. '

5. In Chapter VII it is assumed that the lengths B C, D E, etc., are so small that they may
be represented by geometrical points, and also that the current at these points, instead of being
a minimum, falls to zero. This assumption is often made in theoretical work, because under these
conditions both the magnitude and the phase of the current can-be shown by a sine curve,
fig. 1c; at points lying above the wire the current is of the same phase throughout, and at
points lying below the wire the current is 180° out of phase with the points lying above it.
Alternatively, we may say that if at any instant the current is flowing from B to A, the current
in B Cis flowing towards B, in the length-C D from C to D and so on. We may therefore show
the distribution of current along.the wire by drawing a series of arrows of varying sizes as in
fig. 1d. This .method is of great assistance when considering the distribution in an array
consisting of a number of conductors connected in series.

Nature of input impedance

6. (i) The distribution of the current maxima and minima is entirely independent of circuit
adjustment at the transmitter. The tuning adjustments at this end may greatly alter the
magnitude of the current, but will not affect the relative amplitudes or phases at any two points
in the wire. The impedance offered to the transmitter will, however, vary greatly with the
distance of the supply point from the far end. In fig. 2a the transmitter is connected at a distance

of %, and in fig. 2b, a distance of —2/., from the far end. In both cases the supply is connected at
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Fic. 2, Caar. XV.—Nature of impedance of wires of various lengths
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a current maximum, and whenever this is so, the wire offers an approximately non-reactive
impedance of the order of 35 to 100 ohms. In fig. 2c, however, the transmitter is connected at

. V1 . . :
a distance of 5 and in fig 2c, a distance of A, from the far end. In both cases the supply is

conneeted at a current minimum and the wire offers an approximately non-reactive impedance
of the order of 2,000 to 8,000 ohms.

(ii) Now suppose the generator to be connected at some intermediate point. In order to
be quite plear it is preferable to draw a considerable portion of line, insert the theoretical current
distribution and afterwards insert the generator. For example in figs. 2e and 2f, the generator

has been inserted at a point less than 2— after a current minimum, measured from the far end.
Under these conditions the impedance offered by the wire is equivalent to that of a condenser

. . . . . A
and resistance in series. In fig. 2g the generator has been inserted at a point between -2 and 5

and in fig. 2h, at a point between %1 and A, from the far end. Tn both these cases, the supply is
—7:' after a current maxémum and the input impedance of the wire

is equivalent to that of an inductance and resistance in series.

connected at a point less than

7. (i) Theoretically, a wire in free space has zero reactance whenever its length is a multiple
of 7‘: Actually, the velocity of wave propagation along copper wires located near to a conductive

lane is about four per cent. less than the velocity of electro-magnetic waves in free space, and
if a length of wire is to be non-reactive its length should be only about 0-96 of the theoretical

value, Thus an aerial having an electrical length of £ should be about 0-244 in actual length

and so on. The exact location with respect to the ground, and the variation in permittivity
and conductivity of the latter, must necessitate a slight variation of this figure in certain instances.
In practice it may be found necessary to reduce the lengths of radiating members as much as
ten per cent. below their nominal length, because discontinuities such as sharp bends, suspension
insulators, etc., all tend to reduce the velocity of propagation along the wire.

(ii) In the early days of radio communication the frequencies employed were very much
lower than those now in general use, and it was as a rule, only possible to employ aerials having
A
T
of the aerial are (a) its effective resistance and (b) its effective capacitance. With the higher
frequencies now in use, however, the input impedance may be equivalent to that of an inductive
or capacitive resistance, or purely resistive, depending upon the ratio of length to a.

a length very much less than In these circumstances, the most important electrical constants

Radiation resistance

8. The radiation resistance of an aerial is defined in Chapter VII ; expressions giving the
radiation resistance in certain simple cases are also contained therein. The conventional method of
finding the radiation resistance of any given aerialis to develop an equation giving the field strength
at all points in space. In Chapter I 1t is shown that the energy density of a uniform electric field of
»xI?
8

in this expression, and the result multiplied by the velocity of propagation, we obtain the energy
per second, i.e. the power, which is passing through any unit area in a plane perpendicular to

strength I' is ergs per cubic centimetre. If the calculated value of field strength is inserted



CHAPTER XV.—PARA. 9

the direction of propagation. The total power passing through a sphere surrounding the radiator
is obviously equal to that radiated, hence, on summing up the total power passing through’
every unit area on the surface of this sphere, and then dividing by the R.M.S. loop current, the
quotient is the radiation resistance. Another method is to sum up the energy passing through
a cylinder of unit thickness immediately surrounding the wire. This method gives both the
radiated power and the wattless volt-amperes required to maintain the induction field, and
therefore gives the aerial impedance as the vector sum of the radiation resistance and the reactance

of the aerial. In this manner the impedance of a-g dipole in free space is found to be

73:3 -+ 742-5 ohms, and the impedance of a vertical :i' aerial over a perfectly conductive earth,

36:6 + 721-25 ohms. When tuned to resonance with the frequency of the supply, the reactance
of the aerial is annulled, although of course the induction field is still maintained.

9. (1) In practice, the radiation resistance is affected by the proximity of the ground, to an extent
depending upon the permittivity and conductivity of the soil. The radiation resistance of a vertical
% dipole, with its lower end at ground level on a perfectly conductive earth, is approximately
100 ohms, whereas in free space it would be 73-3 ohms. The nature of the variation with height
above ground level is shown in fig. 3. Over moist earth of permittivity » = 25 and conductivity
o = 108 E.S.U. the actual radiation resistance is found to be very close to the theoretical value
given by this curve, which may therefore be used for practical purposes. Application of the image

theorem of paragraph 35 shows that a horizontal % dipole very close indeed to the earth’s surface

will radiate infinitesimal energy, i.e. the radiation resistance of such an aerial approaches zero.
When far above the surface, however, its radiation resistance is 73-3 ohms, the theoretical nature
of the variation with height being also shown in fig. 3. Over the ground specified above, however,
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the resistance at heights less than % was found experimentally to be given by the curve shown

in dotted line. It will be observed that in both solid-line curves, the radiation resistance
approaches its free-space value in an oscillating manner.

(i) The radiation resistance of an aerial array can be calculated by either of the methods
previously referred to, but except for very simple arrays, the labour is prohibitive. In any event,
it is impossible to define the radiation resistance of an array of which the various members
carry currents of different magnitudes, except by the somewhat arbitrary method of referring
it to the current in some particular member. Subject to this limitation, however, it is possible
to compute the radiation resistance of a simple array from that ot each member and the mutual
impedance between the various members.

Radiation from hertzian doublet

10. (i) As an introduction to the theory of aerial arrays we may first consider the radiation
field, yo, in the equatorial plane of a single hertzian doublet of length J, situated in free space,
fig. 4a. In this theoretical radiator, a conduction current ¢ = ¢ cos of is assumed to flow in the
wire joining the two capacitance areas, and a corresponding displacement current in the dielectric
between them, but the elementary portions of the conductor itself are supposed to have no
capacitance, so that the amplitude o of the current is the same at all points in the wire. The
conduction current consists of a number N of electrons of charge ¢ E.S.U. = g coulombs, the
average instantaneous velocity being, say, b centimetres per second. Let the cross-section- of
the conductor be 4 cm?; the total volume of wire is then Al cm? and the density of the moving

charge inside the wire is Ng coulombs per cm® The current density will thereiore be
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Fi16. 4, Caar. XV.—Radiation from hertzian doublet.
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total instantaneous current Nl—q—b amperes. We may therefore write

Ngb

—*l— = o} cos wl,

4 =

i9
* = . ‘e . 1
S b choswt. | (n

The radiation depends upon the acceleration a = % of the electrons. Since b is of sinusoidal

form,
ol &

= — —— sin ol

Ng

ol & n
=_N_q_cos(wt+§>_ e .- .. (2)

(i) The object of keeping the above expression in cosine form is to bring into prominence the
relative phase of the radiation and the current. In Chapter VII it is shown that the electric
field strength y due to a single accelerated electron at a point P, distant r centimetres from the

ae
c¥r

the electrons in the wire are sinusoidally accelerated, the field at the point P is also sinusoidal,
but will lag behind the acceleration producing it by an angle 8, owing to the finite velocity of
propagation, c. Instead of expressing the field strength in dynes per unit charge, it is more
convenient to express it in practical units. The field set up by the oscillating charge of g coulombs

centre 0 of the doublet, and in the equatorial plane, is equal to - dynes per unit charge. If then

11
is therefore given by substituting, in the formula y = ;—;, 9x 10 qu _wl& €os (wt + g) for

the acceleration a, and Ng for the charge e, giving

9 X 10! ol 9 =
=2"C = z— 4} .. .- 3
It is now convenient to put ¢ =3 X 101, w = 2af = 2%6, giving the axﬂplitude o as
A 2nc 1S
—_ 11 —_ —_—
o =9 X 10X —= X —
60 n}
=9

Thus the complete expression for the electric field in volts per centimetre is
60=al . n
yo-—-—ir—Jcos(wt+§—é). .. .. .. 4)

Note that the lengths /, 4, and » are all measured in centimetres. If these are given in metres
the field strength 1s expressed in volts per metre ; or if the constant 60 is replaced by 37-25, and
7 is measured in miles (/ and A still in metres) the field strength is in millivolts per metre.

11. The amplitude of the field is seen to vary inversely as the distance 7, but is independent
of the angle 6. Hence the polar diagram in the equatorial plane is a circle with the axis of the
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dipole as centre, fig. 4b. The phase angle 8 obviously depends upon the distance 7, for the wave

travels this distance in a time g, hence é = 901 = ?i;—t 7, and therefore

60 =l n 2n
y°=—1—r—e900$(wt+‘§'—"—l"). .o . ‘e (5)

If the point P, instead of being in the equatorial plane, is situated at an angle ¢ above it, the
field strength will be proportional to cos ¢ and is

yw=63'—:de9.008¢.00$(wt+'72£—g;7). .. .. .. (6)

Considering the amplitude only, we see that this varies with the angle ¢ ; .in the equatorial plane,
@ = 0, and the amplitude of the field strength is 6%;-1 4, while in the polar direction, ¢ = 90°,

the amplitude is zero. The variation of y with ¢ is easily shown by means of a polar diagram
as in fig. 4c in which the radius vector is proportional to cos ¢. The diagram therefore consists
of two circles of unit diameter which are in contact at the axis of the doublet. By rotating the
diagram round this axis we obtain a solid surface giving the relative field strengths in all directions
in space. It is most important to remember that this solid surface does not represent the wave
front, the latter being a spherical surface. ' '

Radiation from half-wave dipole

12. The half-wave aerial differs from the hertzian doublet in its current distribution. Let
the current at the centre of the dipole be ¢ = % cos wt. If the distance, y = OA, fig. 5, is
measured from an origin O at the centre of the wire, the peak current 4, at the point A is

& cos Z-L-;y To find the field strength at a point P, distant r from the origin and in the -
equatorial plane, we consider the field set up by an elementary length dy of conductor, distant
”ny
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Fie. 5, Caar. XV.—Notation for dipole in free space.
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y from the origin ; the current over this short length is practically uniform and we may therefore
treat the element of conductor as a hertzian doublet of length dy.  Obviously the field dy, at P,

due to this element of conductor, is

dyo = (60;!rdy &o cos ———) cos (wt + f -

Now the fields produced at P by all the elements of conductor will be in phase, and the total
field is that contributed by all such elements above and below the origin, i.e. from y = ;1-1 to

A
y='—4-,a.nd

60 n  2n
=7e90003(wt+§-—77>. .. ‘e . (7)

At a point P, above or below the equatorial plane, subtending with the latter an angle g, the
field is not now merely proportional to cos ¢ as in the case of the hertzian doublet. Instead, a

cos ( Zsin @
factor — must be introduced, giving
60 cos(%sin q)> 9
7¢=7~Wﬂocos<wt+—— ;r> . (8

cos (2 sin g ] . i
The factor “Tow—} is plotted in fig. 6. It is seen to consist of two approximately elliptical

figures, in contact on the axis of the dipole. By rotating this figure we obtain the solid polar
diagram as in the previous instance.

13. Collectmg the principal formulae so far developed, we have the following expressions
for the amplitude F of the electric field at an angle ¢ with respect to the equatorial plane.

(1) For the hertzian doublet

A 60 =l

I, = Ty &o €OS @,

(ii) For the % dipole

T .
60 cos (2—81”()7).
£ =905, 2200

cos @
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Each of these expressions may be divided into three factors,

60

(a).—’ &o, which is common to both.

) I @), =

the distribution of capacitance along the aerial, and may be called the respective Form

’I"he corresponding factor in (ii) is unity. These factors depend upon

Thus the Form Factor of a hertzian doublet is %—l

cos (7—; sin q:)
(¢) In (1), cos . The corresponding factor in (i) is ———*

These factors take into account the effect of the current distribution upon the relative
phases of the elements of field strength at points above and below the equatorial plane,
and may be termed the respective Current Distribution Factors. In general, if the Form
Factor is denoted by F, and the Current Distribution Factor by f (¢), the amplitude of the
electric field at a distance » may be written

6;9 Jo.F.f (9).

Factors. and of a —;- dipole is unity.

fi—

Power input .
14. Suppose 1t is required to produce a certain field strength at a point P, distant » miles

from
near

the radiator, where 7 is sufficiently great to justify the neglect of the induction field but so
that the effects of attenuation are negligible. Working in R.M.S. values, we have from the

previous discussion

r=%"2F f(g) I (millivolts/metre)

and if the radiation resistance of the aerial is R; ohms the power radiated is P; watts, where

Pr = Ier.
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If P is given, then, the required current is

b
(= JF

and the field strength at a distance 7 is

r=¥%rs0, /%

(3725><F><f )R‘

Also, the input power will be given by

Py= 37-25 X F X fe ) Ry
where R, is the total resistance of the aerial. For example let the point P be in the equatorial
plane of a%dipole. Then F =1, f (p) = 1. Let the radiation resistance be 73 ohms and the

loss resistance 10 ohms. Then to produce a field of 100 millivolts per metre at a distance of one
mile, the power input must be

P, = <l><100> % 83

3725
= 593 watts.

The power actually radiated will be ;—g of this or 522 watts.

Field due to two parallel dipoles

15. Let us now consider the field strength produced by a simple array consisting of two
parallel half-wave dipoles in free space; these are spaced apart by a distance d as shown in
plan and elevation in fig. 7, where A and B are the wires and O a point which will be regarded
as an origin. We will first calculate the radiation in the equatorial plane perpendicular to the
wires, each of which is assumed to carry a current ¢+ = < cos o, i.e. the currents in the two wires
are in phase. As before, consider the field at a point P, distant » from the origin O, and let
r>>A. Then AP, OP and BP are practically parallel to each other, and OP =7, AP =

d d
r + gwg 0, BP—r——icoso.
The field produced by the current in the wire will be
n  2n d
ya = K I cos {wt+§—7 r+§cose>} .. .. .. (93)

where K = —%— 2 6—,9 ; similarly the current in B will produce a. field
r 4 3 cos 0

ys = K 9, cos {mt—}- 2; (r —%cos 0): v .. .. (9b)
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and the total field y, = y, + ys or

_ a 2z nd ’ a  2n nd
yo—KJoI:cos {wt-}-—z—— 57— 7 o8 6} +4- cos {wt-’_i_—f r -+ T cos 6}] .. (9c)
By a formula developed in Chapter V, this may be written
ya.—.-.ZK&ocos(%dcoso){coswt+'-;——2—;fr}. .. .. .. (10)

Thus the amplitude of the electric field is
f’o=6—r£-)¢9° X 2 cos (%—dcas 6).

NB. As OP>>>AB, AP OP BP are considered o be parallel
Fie. 7, Caapr. XV.—Notation for parallel dipoles in free space.

Grating Iactor
16. The amplitude of the field due to a single dipole situated at the origin O would be
?1 o = 6"9 090
r

and we see that the field due to two parallel dipoles, separated by a distance d, and carrying
equal, syn-phased currents, is chtained by multiplying that of a single dipole by the factor

2 cos ( —’;Td cos 0 ), which is called the equatorial plane Grating Factor for a pair of dipoles. Its

value obviously lies between the limits zero and 2, and is plotted in polar co-ordinates in fig. 8,
line A, for various values of fii from O to 4. The circle surrounding each diagram has a radius

of 2 units, representing the upper limiting value of the Grating Factor. The first diagram,
fig. 8, A1, is for d = 0, i.e. two superimposed dipoles each carrying unit current, which are
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equivalent to a single dipole carrying a current of two units, hence the diagram corresponds with

the limiting circle. For other values of ij, upon the line joining the two aerials, the field
strength varies with the spacing. As d is increased toward the value %, the field strength

graduélly decreases, and when d = % the radiation from the two aerials is in anti-phase at all
points along this line, so that complete interference, i.e. cancellation, results. For values of 4

greater than %, multiple lobes appear. In the directions § = 0 and 6 = 180°, the Grating Factor

is 2, if » is even, and zero, if # is odd, whenever d = ”—;’ Upon a line perpendicular to that

joining the two aerials, the Grating Factor is equal to 2 for all values of d, because the radiation
from both aerials reaches all points simultaneously.

17. Now consider the field groduce‘d in the equatorial plane by two dipoles in which the
currents are of equal magnitude but differ in phase. Let the aerials be A, carrying a current
12 = Jo cos ot and B with the current 13 = Jo cos (wt + B). Then

y‘=K<-9ocos<wt+g—27”r—-?cos()>

y3=Ke9ocos(wt+g———%;r+#cosG+ ﬂ).

yi+ v =K I icos(wto——%—dcos 0) + cos (wio—i-i?ws 6 + ﬁ)}

and the total field becomes
d d
vo = K 9, [cos (wto'— % cos 6) -} cos (coto + -7% cos 0 - ﬂ)] (11)

Tosimplify,putwto———X,%icosB:Y,P=X— Y R=X+Y,0Q=R+ B; then

vo=K Fofcos (X —Y) +cos (X + Y + B)}
= K J; {cos P + cos Q}.

By Chapter V, cos P +cos Q = ZP—;Q cosP;Q.

Whence

)’o=2Ke9<>COSX—Y+()2(+Y+ﬁ)cos(X_Y)_(2X+Y)‘“ﬁ

= 2K 9, {cos(X—i—g) cos—(Y—{-g})

= 2K 9, [cas(wto—l— g)] cos (? cos 6 + g) . - (12)
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B

The Grating Factor is therefore 2 cos (—nid cos 6 + E) and is plotted in polar co-ordinates in

fig. 8, lines B to E, for various values of g and ‘—j Of particular interest is the bottom row,

which shows the fields due to two aerials carrying currents in anti-phase. Obviously, the
radiation from the two cancels out along a line perpendicular to that joining the two aerials,
while along that line, the Grating Factor is zero if d is an even number of half wavelengths, and
equal to 2, if 4 is an odd number of half wavelengths. Line C will again be referred to in con-
nection with reflector aerials, while line E is of importance in the study of loop aerials, both for
reception and transmission. We see then that fig. 8 has many important applications and will
repay a very careful study. To facilitate the enlarged reproduction of any particular diagram,
each limiting circle has been divided at 15° intervals, and a series of concentric circles of various
radii inserted within the limiting circle of fig. 8, A 1. When adding these diagrams, it must be
noted that the radius vector changes sign on passing through a zero. An example is given in
paragraph 41.

Combinations of pairs of dipoles

18. Consider an drray of four parallel dipoles spaced one-half wavelength apart and fed
with equal, syn-phased currents as in fig. 9a. e polar diagram in the equatorial plane may be
obtained in the following manner. Divide the array into two pairs of aerials ; the polar diagram
of each of these pairs is, by the previous paragraph, the elongated figure-of-eight shown in

diagram A 5 of fig. 8, and repeated in fig. 9b. For the four aerials spaced é—' apart, we may

now substitute two aerials, each having the above polar diagram, but spaced one wavelength
apart as in fig. 9c. According to diagram A 9 of fig. 8, two dipoles with this spacing, and syn-
phased currents, have a polar diagram with four lobes; this diagram is repeated in fig. 9d.

_F16. 9, Crapr. XV.—Development of polar diagram for four parallel dipoles carrying syn-phased current.



CHAPTER XV.—PARAS. 1920

The field distribution of the combination of two radiators which, individually, give the figure-of-
eight diagram, fig. 9b, may now be obtained by multiplying together the corresponding polar
radii of figs. 9b and 9d, giving the result shown in fig. 9e. The principle of combining
parallel aerials carrying syn-phased currents is the basis of what are called broadside arrays.

19. The above process may obviously be extended to obtain the field distribution in the
equatorial plane for any number of dipoles irrespective of the spacing and the phase of current in
the respective aerials. Thus, suppose we have an array of four parallel dipoles A B C D, fig. 10a,
A
4
in A, the current in C lead by 90° on that in B and sc on. The polar diagram for the pair A and
B, or for the pair C and D, is given in fig. 8, diagram C 3, which is reproduced in fig. 10b; it

/ /(% /180 jr270

02 s 2 A 0 e———A o
4 4 4 2

@

e 2 units—= b 2unils >

spaced — apart, each carrying a current of I amperes. ILet the current in B lead by 90° on that

(b) (c)

Fig. 10, Caar. XV.—Development of polar diagram for four parallel dipoles
with currents in progressive phase diflerence of 80°.

is a cardioid or heart-shape. For the four dipoles, we may now substitute two radiators each
having this polar diagram, spaced g apart, and with currents in anti-phase. Two dipoles

with this spacing and current phase give the polar diagram E 5, fig. 8, reproduced in fig. 10c.
The polar diagram of the four-element array is found by multiplying together the corresponding
polar radii of diagrams C 3 and E 5, resulting in the diagram shown in fig. 10d. It will be
observed that the array is substantially uni-directional, maximum radiation being directed in
the direction of the aerial in which the phase of the current is lagging. The principle of combining
parallel aerials carrying currents differing by a constant angle, which in turn 1s related to the
spacing of the elements, is the basis of what are called end-fire aerial arrays.

Radiation in the plane of the aerials.

20. We may now investigate the shape of the polar diagram in the plane containing the
aerials. In fig. 11 let A and B be two parallel dipoles each carrying a loop current ¢ = %, cos wt.
At a point P at an angle ¢ above the equatorial plane, situated at a distance 7 from the origin O,
where r>>1, the fields will be

cos (;f‘siﬁ tp) 0 p
n r
yy = K 3 —————" cos [mt+ 5 7 (r-i—z—cos:p)]

cos @
cos (nsincp
: 2 ) n  2n d

v =Ke9°—c—“~;—_cos [wt—l— 3 7 (r—ﬁcosw)].
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cos (g stn ¢)

cos @

The Current Distribution Factor

has previously been introduced to account for the fact that the dipole does not radiate uniformly
in any plane perpendicular to the equatorial. The combined field is y, == ¥, + y5 and

cos sm qp)
v, —-[21( — ™ o ¢)] cos (ot + 5 — —-r) (13)

®) F(¥)

\5 © 6(#)
(d) Polar diagram in the
plane conlaining
the dipoles

Fig. 11, Crar. XV.—Radiation in plane containing two parallel syn-phased dipoles.
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The portion of the right-hand member which is enclosed in square brackets is the amplitude of
the field in the direction O P. It is the product of three factors

: 60
MK&=7&

T,
cos (T) sin (p) 1
(ii) ﬂ—wﬁ——, i.e. the Current Distribution Factor of a 3 dipole.
¥

(iii) 2 cos (%‘-i cos cp), i.e. the Grating Factor for a pair of syn-phased dipoles in the
plane containing them. This is of exactly the same form as the equatorial plane Grating
Factor, but is a function of the angle ¢ instead of being a function of the angle 8.

The Current Distribution Factor is given by fig. 6, and the Grating Factor by the upper row of
diagrams in fig. 8. Thus the resultant amplitude in any particular case may be obtained by

multiplying the constant %—0 &o by two polar radii obtainable from the diagrams. As an example,

take d = :—f Fig. 11bis the Current Distribution Factor, fig, 11c the Grating Factor, and the
P

diagram obtained from the polar products is shown in fig. 11d.  This product has a maximum
value of 0-6, at an angle of approximately 55°. If the Grating Factor in this plane is denoted
by G (¢), the RM.S. field in the plane containing the aerials is

60 L
Iy=— I, X F X f(g) X G {g)
where F and f {¢) are the Form and Current Distribution Factors as before. It will be seen
later that if the co-ordinates of the point P are #, 6, ¢, the Grating Factor becomes

G (6, ) = 2 cos (%—d cos 0 cos ¢p\}

Three dimensional polar diagram

21. We have now shown how to obtain the polar diagrams for a pair of spaced aerials in the
equatorial plane and in the perpendicular plane containing the aerials. While it is possible te
calculate the polar diagram of any combination of aerials in all directions in space, the process
becomes very tedious when more than two or three aerials are involved. The solid polar diagram
may however be obtained by combining the diagrams for the equatorial plane and that containing

. A
the aerials. The process will be illustrated by taking the two parallel dipoles, spaced 5 apart

in free space as before (fig. 11a) and carrying equal, syn-phased currents. The R.M.S. field
strength at an angle ¢ with respect to the equatorial plane is proportional to the Current

cos (g sin q:\fi
. /
Distribution Factor f (¢} ; in this particular case f (¢} = s and has airéady been

plotted in fig. 6. If this diagram is rotated about the axis 1,52, fig. 11a, the resulting solid figure
(when multiplied by %O I,) gives the three-dimensional diagram of a single dipole. The

combination of two such dipoles introduces .a Grating Factor which has been shown to be

2 cos (%d cos 6) in the equatorial plane and 2 cos (f}‘f €0s q:) in the plane containing the aerials.
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The Grating Factor is plotted in fig. 11c ; if it is rotated about the axis 3, 4, the result is another
solid figure. The polar radii of the latter, for any direction in space, gives a factor by which

the quantity %0 I, f(p) must be multiplied, in order to give the R.M.S. field at any particular

point. The radius O X in fig. 11b is equal to unity, and the radius O Y in fig. 11c is equal to
two units. Thus, in the equatorial plane, the field strength in a direction perpendicular to the
line upon which the dipoles are situated is twice that of a single dipole.

"4,5*- zé— |-3{—-3/i—-77""'27 \
*— 3{ ~—o!5—--i —-v-7£5—"4"28/w

48) Sphere with parallels corresponding lo Sum of G(¥) and (%) db
pheqrating aclor G (%) m§§" 9 € Sum (#) and (%) n

(b) Sphere wilth parallels corresponding lo (¢) Confour lines derived from (c)
C.Dfactor (%) in db

F1c. 12, CRaP. XV..—Gain contours on spherical surface.
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22, Instead of in units of length, the radii may be expressed in decibels above or below unity.
The field in any direction is then given, in decibels above or below the equatorial field of a single
dipole, merely by adding the decibels corresponding to the respective radii of figs. 11b and
11c. If we take a spherical surface and mark off a number of equal zones parallel to the equatorial
plane, each of the boundary lines between adjacent zones may be marked to show the number
of decibels below the field strength in the equatorial plane as in fig. 12b, the figures being derived
from the Current Distribution Factor. Similarly, if we draw a number of equal zones in a plane
perpendicular to the equatorial plane and to the plane containing the aerials, the boundary lines
between these zones may also be marked in decibels above or below unity as in fig. 12a, the
figures being obtained from the Grating Factor. At the points of intersection of any two lines,
the field strength is above or below the equatorial field of a single aerial by the sum of the decibels
appropriate to the two intersecting lines. One quadrant of a spherical surface, with both sets
of zones superimposed, is shown in fig. 12c. It must be particularly noted that although the
boundary lines in fig. 12b correspond to parallels of latitude, the boundary lines of fig. 12a
do not pass through the pole and are not analogous to meridians of longitude.

23. If now we insert, at the intersection of all boundary lines in the spherical surface, a
number equal to the algebraic sum of the decibels appertaining to the two intersecting lines, we
obtain the gain or loss in decibels compared with the standard at different points on the sphere.
These figures have been inserted in fig. 12c. By joining all points of equal gain, we obtain a
field ‘strength contour diagram as in fig. 12d. A close examination of this figure shows that in
each quadrant of the surface there are two maxima. One, corresponding to the main lobe,
is 6 db. above the standard while the other is at an elevation of about 55°, in the plane containing
the aerials, and its maximum is about 4 db. below the standard. This lobe has already been found
to exist (paragraph 20). From this date we may make a solid model of the polar diagram in
plasticine, as shown in fig. 13. To do this, the gain in db. above or below the standard must
be converted back to absolute field strength.

Field strength map—the sinusoidal projection

24. When the principles involved in the production of the solid diagram are thoroughly
appreciated, it will be found easy to construct a map showing the gain or loss in different directions.
We may consider the aerial array to be situated at the centre of a sphere and to illuminate

Fic. 13, Cuap. XV.—Solid polar diagram—parallel dipoles in free space.
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different regions with greater or less intensity. The delineation of a spherical surface upon a
plane is most familiar in the form of Mercator’s projection of the earth. This projection is
unsuitable for general use in aerial array theory because the high latitudes cannot be shown
with accuracy, and it may be necessary to show the field strength vertically over the aerial.
A suitable projection is that known as sinusoidal, in which the length of a parallel
of latitude is proportional to the cosine of the latitude. This is shown in fig. 14.
In the original drawing, the length of one quadrant of a parallel of latitude in the
equatorial plane, i.e. latitude 0° is 9 inches. The length of the corresponding quadrant in
latitude 10° is 9 cos 10° = 8-85 inches, in latitude 20° is 8-45 inches and so on. The meridian
corresponding to longitude 0° (with the convention of fig. 10) is a line through the points given
above and is a cosine curve. Longitudes 10°, 20°, etc., are also cosine curves obtained by the
division of each 90° into nine equal parts. Once the sinusoidal graticule has been prepared, the
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Fic. 14, Crap. XV.—Gain contours shown on sinusoidal projection.

parallels of latitude may be allotted the appropriate Current Distribution Factors (in decibels)
and the zones perpendicular to these may be inserted by frechand drawing with sufficient
accuracy for most purposes. In fig. 14 these are denoted by chain-dotted lines. The latter are
allotted their appropriate values of Grating Factor (in decibels). The total gain is then inserted
at the intersecting points, and the gain contours drawn. Alternatively, the gain in decibels may
be reconverted to absolute field strength. There is of course no objection to working in absolute

field strength from the beginning, but this would necessitate finding the product of two numbers
for each intersecting point.

Use of vector algebra

25. When it is necessary to calculate the field at a point P in space, having the co-ordinates
r, 0, ¢, the method now to be described will be found more convenient for algebraic purposes
than the purely trigonometric methods previously adopted. Instead of considering the sinusoidal
current as the product of a constant, i.e. the amplitude %, and a trigonometrical function of
time, e.g. cos wi, it is considered as the product of a vector I and a vector operator ¢!, Now

&' = cos wt + 7 sin wt so that 1™ = I cos wt 4 7 1 sin wt. Since in operations involving
complex quantities of this kind, the real and imaginary parts are entirely independent, we may
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deal with a current i = J cos wt by saying ‘ let ¢ be the real part of I g The magnitude
of the vector I is of course equal to the amplitude  of the current, in fact I may be regarded as
the product of the scalar ¢ and a unit vector. In practice, it is usual to write merely “let

t=1 gj“" "’ the real part only of the final result being taken. For exarhple, consider the field

due to a % dipole in free space, carrying a loop current i, = %, cos wf. Let this current be -
L e 7 wt. Then the field y, at the point P = 7, ¢, will be ‘
60 25
y¢=7f(lp)o90608<wt+—g——~;r> .. .. (14a)

in the notation of previous paragraphs. 1Inthe present notation,

£ 1 2n
T — jy

y¢,=6—:)f(<p) I, ™ S . .. .. (14b)

or more economically

wt+7,1;—2—;1r>

m=6—,0f(¢) Le ( ] (41c)

-26. The advantage of this notation lies in the ease with which the fields due to two or more .
radiators can be combined, even if they differ both in magnitude and phase. Referring to

Chapter V, an impedance of magnitude Z = 4/R? 4+ X2 ohms may be represented both in
magnitude and in its effect on the phasce angle of a current, in any of the following ways,

Z[0=R+jX=Z¢"

or
Z]0=R—jX=2¢""

. ¢
0 = =
( tan R

depending upon whether the reactance is positive (inductive) or negative (capacitive). Obviously
Z |8 = Z\~— 6 and vice versa. For example, an EM.F. E ¢’ acting in a circuit of Z [ 6
ohms, will produce an instantaneous current, -

._Eg™ EJ
v=Z76 = 7\
__E jot =10

-—28 8

& “* =% (real part only)

NSy NI

cos (wt — 6),
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i.e. a positive reactance produces a lagging current. Similarly, an impedance Z *\ 6 ohms, acting
under the same conditions, produces an instantaneous current

\ YA

gt +o (real part only)

NiE N

NI &

cos (ot + 0),

i.e. a negative reactance produces a leading current. It is also convenient to adopt a distinctive
type of symbol for any vector operator, for use where it is unnecessary or impossible to define its
properties completely. In the following text such operators will be denoted by lower-case (i.e.
“small ) Clarendon type, thus naturally associating with vector quantities. The latter are
printed in Clarendon capitals, except where the symbol is a Greek character, when a bar superior

is used thus T. Vector operators are often used to denote the vector ratio between two

quantities as follows:—Suppose we have two currents, ¢; = &, cos (wf — 6) and

1, = J4 cos (wt + ¢). The ratio % of the amplitudes is a mere number and may be denoted
1

by M. We also require to know their relative phase, and in the vector notation

G =1 =1 /ot — 8
=LYt =T, /ot +¢

1"2_Iz/cut+<p
5, L ot—20

=I—?/w£+tp-—wt+6
Il

=m .

The above method of treatment leads to the simple algebraic solution of problems which would
otherwise be comparatively difficult and much more tedious.

General case of two parallel radiators

27. Referring to fig. 15, let A and B be two parallel but not necessarily identical aerials.
Their midpoints are, however, equally spaced on either side of an origin O in the equatorial phase,
the distance apart being d. Consider the field at the point P =7, ¢, 8, where » = OP is very
much greater than d. Let the angle XOP = «. Then XAP = XBP = « also. We may
therefore write

AP=7A=?’+§-COSOL

d
BP:r,;:r«-EmSa



CHAPTER XV.—PARA. 28

with ne'gh'?]ble ertor. Now suppose the currents at the midpoints to be Iy, = I, ¢ and

I'y =1, J*+ A If F,, Fyare the Form Factors and f, (¢), fs (), the Current Distribution
Factors of the respective aerials with regard to their midpoints, the individual fields due to the
two aerials will be
2n
. 60 P IZ7
7A=.77F.l-f1(¢’)1.;8 A

‘an
JyB

.60
7» -"-'-.77 Fo.fa(p)I'se

or
2 nd
60 —f r —j— cos
Ya=1 Fo.filplue *e °*
2 - nd
60 s —-—f—2 +j—cosa
= Fafal@)lse e’
Thus the combined field is
,2n _ . nd
.60 =i r , "Iz cosa , + 1= cosa
y=j—e * [F‘.f‘(qv)lle Y 4+ Fpfal@lae ] C e (18)

The above process may obviously be applied to an array consisting of any number of elements.

F1c. 15, CRAP. XV.—Notation, general case of parallel radiators.

28. Let us now take the specific case where the aerials are identical. Then F,. f, () =
Fy.fa(9) = F. f(g). ,

For brevity we may write K =5 ? F. flp) e 3 ', and proceed to allow for the difference in

magnitude and phase of the currents. Let the amplitudes be <¢,, 95, and Iy =M 4,. The
current in the aerial B leads on the current in the aerial A by an angle g, orI'y = M [8 I,
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The total field is therefore

—j!mta +f1dma
y=K|I'ye "4 + M/l "*
—% i+ % o
=KI'L k3 +M€
_ 2
—1 7 cosa i (8 + — cos q)
=KU,e *° [1+Ms’ O ] .. (16)
NowKI';sﬂzmais the field due to the aerial A alone and may be denoted by y,. Then

2nd
B+ = cos )
,,=,,‘[1+Me A ]

_ [1+M/ﬂ—|—g—:-dco.9a].
= rA

It now only remains to find the scalar value of the quantity enclosed in brackets. To do this let

g+ -2-? cog x =y,
M/_'_p = Mcos py +7 M stn y.
The required scalar is that of 1 4+ M [wor 1+ Mcos y +j M sin y, and from Chapter V this

is known to be /(1 -+ M cos y)2 + M2 sin®y. This easily reduces to /1 + 2M cos y + M2 and
therefore,

y = ys /1 +2 M cos v + M2 ' - .. ..(17)_
The R.M.S. field will be X ,
r=2F o LTy FIE (9

29. Before proceeding further, let us examine the angle «, which is more conveniently
expressed in terms of the angles 6, . An examination of fig. 15 shows that the projection O Q of
O P upon the equatorial plane is O P cos ¢, and that the projection of O Q upon the datum line
OXisOQcos 8. Since OP =7, OQ =7 cos p and the projection of OP upon O X is » cos ¢
cos 6. The direct projection of O P upon O X is obviously O P cos « or 7 cos «, i.e.

7 coS & = 7 cos ¢ cos 0

€0 & == ¢0S @ ¢0s 8.

30. We are now in a position to discuss the polar diagram. With unequal currents in the
aerials, the only satisfactory basis of comparison with a single aerial is for equal power. From
paragraph 14 we know that the powers radiated by the aerials A and B will be I,? R, and T2 Ry
respectively, where R, and Ry are the radiation resistances. With identical aerials R, = Ry
and the total radiated power is

Pp=I1R,+M1,)2R,. .. .. ..(19)

Py

For a given power, then, the current I, must be equal to ,\/ RO MY
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Inserting this value for the current, we have, for the R.M.S. field

P=67OF,f(¢)Jm7J +M2+2Mcos(ﬁ+—cos<pcosﬂ)

(20)
The polar diagram of a smgle aerial of the same kind, situated at the origin O, is given by the
expression
60 Py
I1---—71:._]1‘((]7)/\/17A .. . . . . . (21)

and is a circle about the origin. The ratio of the field produced by the two aerials, to that pro-
duced by a single aerial radiating an equal power, is

] 1+M2+2Mcos(ﬂ+2%dcosqacose)
G(‘P;G)= ' 14}-M2 ’

31. From this expression it is possible to calculate diagrams similar to those of fig. 8, for any
value of M/ 8 and at any angle ¢ with respect to the equatorial plane. It is obviously impossible

to portray all the possibilities here ; equatorial plane diagrams corresponding with fig. 8 are
derived by putting M = 1, ¢ = O, and letting g take any required value. With these substitutions

J2+Zcos (ﬁ+—cos 0)

V2
= 4/1 - cos .

G (6) =

By trigonometry 1 -+ cosy = 2 cos? g so that

G (6) = \/Ecosg

= /2 cos (g + %d cos 6),‘

This expression is the same as that developed by a different method in paragraph 17 except that
the factor \/2 appears instead of 2. This is because we have obtained the Grating Factor for
equal power in single aerial and array respectively, whereas in paragraph 17 the power in the
array was four times that in the single aerial.

Co-linear dipoles
32. Instead of being placed parallel to each other, single wire radiators, particularly é

dipoles, are sometimes placed end to end as shown in fig. 16, and are then said to be co-linear.
The polar diagram of a simple array consisting of two co-linear dipoles can be found as follows.
In fig. 16 let all measurements be made from an origin O lying between the two dipoles and on
their common axis, and let their current loops be separated by a distance d. For simplicity let
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the loop current in each dipole be I e’ mt. Then at a point P having the co-ordinates », ¢, the
field due to the aerial A will be

2n
60 (iwt+-’1——r)
va= > flp)Le poan ce e .. (22a)
2n
60 (J'wi+1'—-—r) .
v=—fleLa\. 7 1T c e e .. .. (22v)
I,’
,”” ?/’(
/r’ ":(\0
/, /, -~
” ’/ /1
/t’ ’,’ Pte
,” ’/’ e
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;"’ /’f ’,
’/J ’i’ -7
”;"’ ”// ”///
”’,?' ,I’ /(/

- <7 o —_
el B D

-(-————&—-D-
\
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Fic. 16, CHar. XV.—Co-linear dipoles.

These expressions are of the same form as in the case of parallel dipoles, and the total R M.S.
field strength is easily found to be ‘

,

“n—dcoa —'gws
I't=6_0f(<p)l{cfa 'P+3 J 7 0’}

7

= éi—(.)f(g\o) I x 2cos-<’~;§ cos «p)
=D . . L L (2

hence the field strength is the product of 670 I and two factors which are obtainable from figs. 6

and 8 respectively. With respect to G(g), given by the latter, only columns 5 and above are
applicable for obvious reasons, and due regard must be paid to the direction from which ¢ is
measured. From physical considerations it is obvious that the dipoles radiate most strongly in a
direction perpendicular to their common axis and this axis is a horizontal line in the diagrams of
fig. 8. The polar diagrams of arrays consisting of combinations of more than two co-linear dipoles
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can be found by the methods explained with reference to parallel dipoles. Fig. 17 shows the
product f(p) G(¢) for all numbers up to 8 co-linear dipoles. This figure has an important bearing
on the radiation from arrays of horizontal dipoles.

Reflector aerial

33. Hitherto, in considering the radiation from two parallel aerials, we have ignored the
effect of one aerial upon the other. It is obvious that when both are supplied with energy each
will receive energy from the other. Of the received energy, a portion is converted into
heat and the remainder radiated into space. Now let us consider two parallel dipoles, A and B,

i apart in free space, and consider their radiation in the equatorial plane, when A is supplbed

with a current 7 = ¢, cos wt, and B is unenergized. Then the field due to the aerial A willinduce
an E.M.F.in B, and consequently an oscillatory current of the same frequency. This * induction *’
is really caused by both the induction and the radiation fields of A, but for the present we shall
neglect the former. The magnitude $p of the induced current in B, under these conditions,
will be equal to that of the current in A, but 45 will lead on &, by 90°. The aerials A and B
therefore radiate an equal amount of energy per second, and the field at any point can be
calculated as in previous paragraphs, putting the angle g equal to 90° ; the polar diagram in the
equatorial plane is-given by fig. 8, C 3. The effect in the plane containing the aerials is somewhat
similar, the only modification being due to the Current Distribution Factor. For comparison
with fig. 17, fig. 18 gives the polar diagram in this plane of co-linear dipoles with reflectors,
calculated on the above assumptions.

34. The exact manner in which a reflector aerial will function depends upon three factors ;
first, its distance from the energized aerial ; second, the ratio of its induced current to that in the
energized aerial; third, whether it is reactive or non-reactive, i.e. tuned or untuned to the
frequency of the energized aerial. The second factor is obviously not independent of the third.
Reference to fig. 8 shows that if the currents in the energized and reflector aerials are equal, the
polar diagram is more or less uni-directional whenever the phase difference between the two

currents is greater than 0° and less than 180°, provided that the spacing is less than % Particular

attention is directed to tl';e diagrams B2, B3, B4, C2,C3,C4, D2, D3, D4, of fig. 8 which
show the theoretical possibilities which may arise. The effect of the induction field cannot be
entirely ignored, and will receive further consideration.

Effect of the ground

35. In practice, the field produced at a given point by @ transmitting aerial is always affected
by the presence of the earth’s surface, but a complete treatment allowing for the curvature of the
earth, and its finite conductivity and permittivity, is extremely complex. For many purposes,
however, the earth may be considered as a flat, perfectly conductive surface, and this simplification
is of great help in visualizing the nature of the effect. A perfectly conducting earth would act asa
perfect reflector of electro-magnetic’ waves, and a flat earth as a plane reflector. If then we
consider the earth’s surface in the immediate vicinity of the aerialto be both perfectly conductive
and plane, we may treat certain problems by a method analogous to that used in geometrical
optics, i.e. by supposing the reflector to give a virtual image of the actual radiator. The virtual
image is defined as a point from which rays appear to diverge after reflection, although no rays
actually pass through the point. This conception is illustrated in fig. 19a which shows a hertzian
doublet A B situated above a perfectly reflecting earth. At the instant depicted, the current is
flowing from A to B, and consequently a positive charge is accumulating at B.

36. Now take a point B’ situated at a distance OB’ = OB on the other side of the reflecting
surface, so that B O B’ is straight and perpendicular to the surface. B’ is then the geometrical
virtual image of B. Similarly, we may locate the geometrical virtual image A’ of the point A,
Now considering B to be a small sphere, it must possess capacitance with respect to the perfectly
conducting surface and if it carries a positive charge, its electrostatic field would te distributed
somewhat as shown in fig. 19b.. The field due to a similar charge of opposite polarity, situated
at the point B’, is also shown, and it is seen, in conjunction with fig. 19a, that a positive charge
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Fic. 19, Caar. XV.—Ilustrations of image theorem.

at B, above a perfect reflector, will have the same field as would be set up if the reflecting surface
were removed and an equal and opposite charge placed at the point B’. Similar considerations
apply to the points A and A’ and therefore, when a current is flowing from A to B, an equal
current must be considered to flow from B’ to A’. The field strength at any point above the
reflector is found by algebraic addition of the fields due to the-aerial itself and to its virtual image,
with due regard to the direction of current in the latter, as determined by the above considerations.

Fig. 19c shows the distribution of current in a vertical ‘—1}. aerial, and the current in a horizontal

dipole is shown in fig. 19d together with those of the images. In certain circumstances the image
theorem lends itself to comparatively simple application, and it will now be applied to find the
radiation characteristics of the horizontal dipole.

Horizontal dipole

37. For purposes of notation, the dipole is shown in figs. 20a and 20b. We shall consider
the vertical polar diagram in the plane of the latter figure. By the preceding paragraph the image
A’ B’ of the dipole A B is as shown, and therefore we require to find the polar diagram of two

parallel dipoles, 4 = 24 apart, carrying currents in phase opposition. If y, is the field due to the
aerial at the point P, and yg the field due to the image, the total field is y = y, - y, where

n 2x .
60 jlowt+ 5 — — (r—hsing)
—Is[ 2o ] O ¢ )

7’A—'r

R n 2n . 2n N , 23 )
601 J(wt+é—77.r) i hsin @ —;Thsmqo .
Y = -;' £ & — €

n 27
(%)) jlowl+ > — = (r+hsing)
Ie [ 2 ] (24D)

2 . I .
_‘:—nksqu lj hsin @

Now (e a — & : =25 sm(g;—'h sin (p)

.'.y=6y—olej(w+n_?')x2sr'n(2—:‘hsiucp). .. <. {(24c)

Sk
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The R.M.S. field being

i—olx?.sm(“hsmw) . . . .. o (25)

The factor 2 sin (%’—' k sin qo) may be called the Vertical Distribution Factor and denoted by

D(g) ; it is obviously analogous to the Grating Factor previously used in the case of aerials in
free space, the change from ‘ cosine " to *‘ sine "’ being due merely to the choice of a different
datum. The Vertical Distribution Factor is in fact given by the series of polar diagrams in fig. 8,
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Fic. 20, Crar. XV —Notation, horizontal dipole

line E, except that they must be turned through 9¢°. In the first few diagrams. one half of the
limiting circle has been shaded to represent the ground, so serving as a reminder fo perform the
necessary rotation. The relation d = 24 must not be forgotten, e.g *ne dhagram b 18, d = 47,
gives D (p) for a height of 24.

Effect of height of dipole

38. Several additional vertical polar diagrams are given in fig. 21 {Sheets 1 and 2), and trom
these it is apparent that no matter what the height may be, there is no radiation along the surface
of the earth, even if the iatter is perfectiy conductive. It follows that witii a horizontal nrriai
no communication can be performed by means of a ‘rue ground ray. If b 1s less than -3, the
greater part of the energy is radiated vertically ; if 2 isincreased to abour (-4 the diagram show:
signs of breaking intc two lobes. This kind o3 dia rgram is very suttabie ior @ marker beacon i
a blind approach system, but for very ittie eisc. As i 1s increased to 057 the two lobes becom:
fully developed, the vertical radiation: fali...g 10 zero and the maximum field being developed a:
an angle of 30° to the horizonta! /4 iurther increase of helght leads to the development o

5]

. O ) . .
i, =4, 24, ete,, the number o}

additional lobes and whenever 4 is an infegral multiple of 5 €8 45t

. 4k . P . 3 4 . . «
lobes 1s equal to —-, thus a height of —/ gives five iobes, and so on. It foliows that one lobe is

i

a2

vertical whenever 4 is an odd muitiple of /i and that no vertical radiation occurs when % is an
&3

even multiple of I The angles at which successive maxima occur can be determined oniy
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approximately from the polar diagrams, but are given to a higher degree of accuracy in fig. 22.
The practical use of figs. 21 and 22 is to determine the most effective type of aerial for any
particular service. As already stated, heights less than about 0-31 are useless except for marker

beacons and the like, If %is increased to say 0-45 or 0-5, the aerial may be suitable for short-

distance transmission, e.g. up to about 500 miles, for a projection angle of 45° will give a signal

at about that distance by reflection from the F region, assuming the height of the latter to be

about 200 miles. For distances of 1,000 miles or more, a projection angle of about 12° to 15° is

required ; from fi. 21 it is seen that to get maximum radiation at this angle a height of from
5 )

4

250 to 300 feet.

J to =4 is necessary, Thus if 4 = 80 metres, the radiator must be raised to a height of some
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F1c. 22, Cuapr. XV.—Horizontal dipole: angles at which field maxima occur.

39. The projection angle of 12° to 15° is suggested for transmission wia the ionosphere, but
where direct-ray communication is necessary, as in ground to air service, a much greater height
would be desirable. An aircraft at 10,000 feet and a range of 50 miles is only about 2° above the
earth, and if the maximum of the first lobe is to be brought down to 2°, the height of the aerial
must be about 7.  This is of course quite impracticable with a wavelength of 80 metres, and is
not very easily or cheaply achieved with so short a wavelength as 3 metres. Nevertheless, it
must be regarded as axiomatic that for efficient ground to air communication on high and very
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high frequencies, the highest possible masts must be used. Even at comparatively short ranges,
the energy received at ground level will generally arrive by reflection from the ionosphere, and
the signal will generally be subject to severe fading. When dealing with low angle radiation,
i.e. up to a few degrees, the height 4, which gives the first maximum at an angle ¢, radians, is
found thus, ‘ :

A
h Py = 4
A
h= .
49,
If @, is in degrees,
14-32
h= .
®1

Vertical aerials

40. The vertical polar diagrams of vertical aerials situated on or near the surface of a perfectly
conducting earth are obtained by summing the effects of all the elementary hertzian doublets
which comprise the aerial, together with those constituting its image. The elevation of the
centre point of the aerial above the ground level is of considerable importance ; examples of this,

in the case of a % dipole, are given qualitatively in Chapter VII. A single example wil be given

/’(
e
." /T"
3 9 \?,
L oD \
i G 7
A
% .}r“‘q”
L ()

FiGc. 23, Cuap. XV.—Calculation of vertical polar diagram of %1 aerial on perfect earth.

to illustrate the method of calculation. Referring to fig. 23a which shows a gl aerial with its

lower end at ground level, together with the assumed current distribution in the aerial and its
image, it is seen that the length of wire conveniently divides into three g sections, A, B, C, each
of which may be considered to give rise to a field at the point P. The notation is given in the
diagram. The section C gives rise to a field

b} (wt + ;—- -27” r)

vo= /() Te . @
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Note that f(g) is the appropriate Current Distribution Factor and geometrically is identical with
fig. 6, although the angle (¢) is in the present example measured from the ground. The distance

of the point P from the current loop of section A is (r — ; sin <p>, and from the current loop of

. i, . . . .
section B (r + 5 s qo). The currents in these sections are in anti-phase to that in section C. The

fields due to these sections are therefore

- (irof(tp) 1¢ (M%ﬁi‘n")

Ya

=‘G—f)f(qone"[““3“27"("%“'”“")].A .. .. (e7a)

n 2n 4 )
flowt+5;——=— 7+ sin
y’:_Gri)f(w)Iej[ 2 ‘( 2 w)] ce .. .. {(27b)
and the total ficld is

n 2a
il +5—57 . S
-y~_=y‘+yn+yc=670f(ep)lej( 2 )[1_(8+1nsmw+ erjnsmq)] . (27(:)
the R.M.S. field being

I = G_er((p) I [1 _ (8+jnm¢ o+ e—jnsinxp)]

=670f(¢)1[1—2003(nsin¢p):| L@

Vertical polar diagrams
41, The above expression is easily plotted with the aid of fig. 8. Ignoring the term ? I,

the shape of the polar diagram can be found thus. Setting aside the factor f(g) for a time, we
have to plot {1 — 2 cos (« sin p)]. Now [2 cos (# sin ¢)] is given by fig. 8, A 9, turned through
90°, and is shown in dotted line in fig. 23b. Before proceeding further, it is necessary to note
that in any diagram of fig. 8 which possesses more than two lobes, the latter are alternatively
of positive and negative sign, the lobe extending in the direction 0° being positive. In the dotted
line diagram of fig. 23b the signs have been reversed, so that what is shown is- — {2 cos {n sin ).
To this, a circle of radius 4 1 unit (shown in chain line) must be added, giving the result shown
in thin solid line. The latter diagram represents [1 — 2 cos (= sin ¢)], and to obtain the polar
diagram, it must be multiplied by the appropriate Current Distribution Factor f (¢) (fig. 6)
giving the final result shown in heavy line. Proceeding in the above manner the vertical diagrams
for vertical aerials of varipus heights up to 24 have been calculated, and are shown in fig. 24. 1t
will be observed that all lobes have a common tangent, and further that if the number of quarter
wavelengths in the actual aerial is odd, there is always some radiation along the ground, bearing
in mind that the latter is assumed to be a perfect conductor. The effect of the finite conductivity
will be dealt with later.
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Mutual impedance between adjacent radiators

42. Although the elementary theory indicates that certain results will be obtained when
given conductors are of particular lengths, or spaced at a particular distance from earth or another
conductor, it is found in practice that optimum results are often obtained with slightly different
dimensions. In many cases, this is due to the assumption that the mutual impedance between
conductors, or between conductor and earth, is zero, whereas it may in fact be of the same order
as the impedance of the conductor itself. The magnitude of the mutual impedance between two
radiators in free space is defined as the ratio of the induced voltage at the current loop of a second
radiator, to the loop current of the first radiator; when dealing with earthed aerials it is
convenient to refer the mutual impedance to the base current. The sign of the mutyal impedance,
when defined in this way, is negative. Thus, if 2,5 and 2,, denote the mutual impedances of
a radiator A with respect to a radiator B, and vice versa, Vg, denotes the induced voltage in B
due to the current in A. Let I, be the loop current in A, then

Bup = Tpy = — V—I’:-‘
In the following discussion the notation will be as under :—
I, = vector current in aerial A; R.M.S. value I,
I; = vector current in aerial B; R.M.S. value I,
V, = vector voltage at terminals of aerial A; R.M.S, value V,
Vs = vector voltage at terminals of aerial B; R.M.S. value V,
Z, = /REFX:= magnitude of self-impedance of aerial A
X4
Ry
zZ, =R, +]XA=ZA[_0_A_
Zy = v/Ry® + X»? = magnitude of self-impedance of aerial B

BA = tan—l

X
Oy = tan=! R—:

Zh = Ry + jXa = Z5 /05
B = phase difference between Iy and I,

Zy = +/Ry? 4+ X4? = magnitude of mutual impedance between
radiators A and B

X
—_ -1 M
Oy = lan Ry

Zu = Ry + jXyu =Zl[&_
R, = sum of self and mutual resistance of aerial A -

3
I

sum of self and mutual reactance of aerial A

=
H\
I

sum of self and mutual resistance of aerial B
Xp' = sum of self and mutual reactance of aerial B
2’ = R, + jX.’
2y’ = Ry’ + j X'
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43. The evaluation of the mutual impedance between two radiators is very tedious and
there are very few data available. For identical radiators, the curves of figs. 25 and 26 may be

used. These diagrams give the magnitude Z, and phase angle 6, for various values of % The

first-named diagram is applicable to vertical aerials located directly above a perfectly conductive
earth, the mutual impedance being referred to the current at the base of the aerial in all cases

except for the ;'—aerial which is referred to the loop current as usual. Fig. 26a gives Z, and fy

for parallel —;- dipoles in free space. It may be noted that the above curves give the self-impedance

of the aerial also, i.e. Z, [6a = Zy [ bx whenfii = 0. Fig. 28b may be used for co-linear dipoles.

In this case the ordinate, Zy or 6y, is plotted against the separation of the adjacent ends. The
impedance Zy /0y is easily resolved into its resistive and reactive components by methods
previously explained, as in the following. '

Example .

Find the mutual impedance and reactance between two parallel -3— dipoles A, B, f'—apart in
free space.

From fig. 26a, for%d1 = 0-5

Zy [0 =33 [ — 117.
", Ry == 33 cos 117 = — 33 cos 63 = — 15 ohms
Xy = — 33 stn 117 — 33 ssn 63 — 29-4 ohms.

From the above example it follows that if the members of such an array are energized by equal,
syn-phased currents, the impedance of each is z -+ gy =733 4 7425 — (15 + 7 29-4) or
58:3 + 7 13-1 ohms. The reactance of each member will be annulled by suitable tuning arrange-
ments, while the whole array will have a radiation resistance of 116-6 ohms.

44. Now suppose the two parallel aerials to be energized by voltages V,, V3, in such a manner
that Iy =ml, = M [ 8 L. By Kirchoff’s laws,

v‘EIAzA-"“Inz. .. N . o . .. - (283.)

Vo=Lzy+X2 .. .. .. .. .. .. .. {28b)
where %, may or may not be equal to ,. Substituting for I in equation (28a)

Vi=L{Ri+jX, + mzy}
=IA{RA+jXA+MZu/8i+ﬂ}
2, = R, + X, 4+ MZ cos (05 + B)
+ JMZy sin (6u + B),
R, = R, + MZ cos (0x + B) .. .. . .. .. (29a)
X, =X, + MZ, sin (0y + p). . . . .. .. (29b)

or

i.e.
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Similarly
R,—-R,-}--»cos( — B) . ce . .. {29¢)

X,—}———sm( — B). . .. .. .. .. (294)

It is now seen that the radiation resistances of the two aerials are only equal when M = 1and f
is either 0° or 180°. It is of interest to note that in any other circumstances the reactances are also
unequal, so that the tuning reactances of the two aerials will differ.

Eftect upon power distribution

45. As an example of the effects of the value of m,let us consider two gaenals A and B, i

apart upon a perfect earth, and energized with currents I,, I, where I; = 0-8 I, /90°. The
self impedance of each aerial will be 36-6 4 21-5 ohms. From fig. 25, z, = 25 / — 36 ohms.
Then

Ry, = R, + MZy cos (950 — 36)
= 36-6 4+ 0-8 x 25 cos 54
=366 40-8 x 25 x 0-588
=366 + 11-76
—48 36 ohms

Ry = Ry 1—ﬁcos(—90—36)

= 36-6 4 6228 cos (— 126)

25
= 36-6 — 184
= 17-2 ohms.

Let us now find how these aerials would share a power of 500 watts.
I,3R," -+ I;% Ry = 500
I,2(48-36 + -8% x 17-2) = 500
1,2 x 59-36 = 500

Ly “\/5936

= 2-9 amperes
Iy = 0-81, = 2-32 amperes
P,=I2R, =29% X 48-36
== 405 watts
Pp=1T2 Ry =2-322 x 17-2
= 93 watts
P, = 498 watts,
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the slight discrepancy being due to arithmetical approximations. In order to energize the aerials
in the manner specified, the applied voltages V,, V, must differ both in phase and magnitude.

The vector ratio Vs is easily found
B

Vi=liz, +ml, zy
Vi=Lzx4+ml, z
SVa_Zatmzy
Vi Zutme (30)

This equation determines the nature of the network which must separate the feedlng points of A
and B, if they are to be supplied from the same feeder line.

Effect upon polar diagram

46. It is also of importance to appreciate the extent to which the polar diagrams of an
array are affected by the mutual impedance. Taking the two aerials A and B of the previous
paragraph but separated by an unspecified distance 4, the total power radiated will be
I1,2R," + IRy

Putting Iy = M /_ﬁ I, as befofe, the total power radiated is
Py =1,%(R, + MR, + 2MR, cos f).

Thus, for a given power Py the current in A is

Py
IL= 7
: /\/R‘(I+M2+2MR—"cosﬁ)
A

In paragraph 29 the polar diagram of two parallel radiators is derived on the assumption that
Ry = 0. Tt is then shown that at any point P having the co-ordinates », ¢, ¢, the R.M.S.

field is .
P—'——Ff(lp)J 1+M2Jl+M2—}—2Mcos<ﬁ—§—g§dcos<pcose)
. (30

Pr . \ -
where ,\/ K-WE) is the current in aerial A.

To allow for the mutual impedance, then, we have only to substitute the value of I, as modified
by the mutual resistance Ry, giving

PT[I 4+ M2 4 2M cos(ﬁ -+ 2—',ziicoupcos 0)]
= 7 (9’0)

1—§—M2+2Mv——cos [:‘)

. (32)
The horizontal polar diagram is obtained by putting ¢ == 0, cos ¢ = 1. The field at ground

fevel is then
P Qﬂd ’
60 | 14 M24 2M cos| B+ ——cos €
_ F A

i R
RA(I + M2+ ZM—R{cos ,8)

. (33)
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CHAPTER XV.—PARAS. 47-48

If the same power were supplied to the aerial A alone, B being entirely removed, the polar diagram
would be a circle, the field strength being given by

_FJJ
A’

from paragraph 14. The ratio of I'y to I'y,, is

r 1+Mz+2Mcos(ﬁ+2—l—ndcoso)
il . e e .. (34)

Toa 1+M2+2M%cosﬁ
A

47. From this ratio it is easy to plot polar diagrams corresponding to those of fig. 8, but it is
obviously impossible to portray all the possibilities. For the particular case when M =1,
Ry 7 0, we have a further simplification

1+ cos(ﬁ-}—zfdcos 0)

Lo 1 _*_&003‘3
A

, B nd )
4/ 2 cos (Q -+ 5 oS 6

== P“
\/l—l—k—Acosﬂ

The numerator of this expression obviously gives the ratio

To it Ry = 0, as in paragraph 31.
FO(A)

. . . R .
Since neither %‘ nor cos B can exceed unity, the product Rgl‘ cos fi cannot exceed unity and may
A A

be very much less. Thus, with equal currents in both aerials, the shape of the polar diagram is
very little affected by the mutnal impedance, so that fig. 8 may be used for practical purposes
even though the mutual impedance was not taken into account in calculating the diagrams.

Effect of Z, upon current in radiating members

48. (i) In an array consisting of more than two radiating members, the mutual impedance
between the radiators may exercise a considerable influence upon the radiation characteristics.
As an 1I1ustrat10n the array shown in fig. 27 will be considered bqeﬁy Here A, B, and C are

parallel 3 aenah on a perfectly conductive earth, and are spaced apart Each aerial has a self-

impedance Z = R - jX ohms; tuning reactances X;, X, X, may or may not be included.

Letz, =2 + jX,, 2y = & + jX,, & = 2 4 jX,;. Let us first assume that the tuning reactances
are absent, and that the aerials are fed from a common source of voltage V. We then have
V = zl, - zJ; + 2] .. . e .. .. (353
V = zL, + zl; + %], .. .. .. .. .. .. (35b)

Veozl +tzltzl, .. .. .. .. .. .. (35)



<
i
=<

A
Z’]L Z‘}' Z‘}
2,-2+ Zy*Z+ X, Zy=Z+jX,

Fic. 27, Cuapr. XV.—Notation—three parallel aerials,

From the symmetry of the arrangement it is obvious that I, = I, although I,is not necessarily
equal to I,. Let I = ml,. Then

V=(2+z+mzl
V Sl (2Zr+mZ)IA
%+ % + Mz, = 2z, + mz

Z + Zq — 2z,

Z — Zp (36)

and m =

This ratio is easily evaluated. From fig. 25 the various impedances are found to be (to the nearest
integers)

z = 100 + 758
Z, = 10 + 732
. g — 100 + 758 4 10 - 732 + 48 + j94
i 100 + 58 + 24 ~ j47
/158 + 5184
T 124 4 7105

= 143 + 50-277
== 1-46 /11° approximately.

Thus the current in the centre aerial is nearly 50 per cent. greater than in the outer ones and is
slightly out of phase. For practical purposes the horizontal polar diagram may be obtained by
adding a circle of radius 1-46 units to diagram A 9 of fig. 8, taking the vertical lobes to be of
positive and the horizontal lobes to be of negative sign, and ignoring the effect of the slight
phase difference.
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(ii) Next we shall suppose the aerials to be individually resonant, so that 2z, = 2z = 2, =
R =100 ohms. From the previous example it is easily seen that in this case

_R+2zg— 22
R — zp
100 4 10 + 732 4 48 + 794
- 100 + 24 + 747
158 + 7126
124 -+ 747
= 1:49 /18°

m

I

Thus the current in the centre aerial is still nearly fifty per cent. greater than in the outer ones,
and is out of phase by a greater angle than before.

49. Finally, let us find the conditions under which m =1 /0°, the current in each aerial to

be in phase with its supply voltage. To achieve this it will be necessary to feed the centre aerial in
such a manner that Vy is not equal to V.-

V. =2z, + 21 + 21 .. .. .. .. .. (37a)

Vi = 2ol + Zpls + ZpLe .. .. .. ... (37D)
But L=L=I;

Voi=E+7X,+2z+2) L, .. . .. .. .. (88a)

Vs = (22, + 2 4 jX,) I, . .. . . .. (38b)

ie.
zy) = R+ jX + 71X, 4+ Rp +7X; + Ry +jX,
R, =R + Rp 4+ Ry
= 100 — 24 4- 10
= 86 ohms
X)) =X+X,+X;+X¢=0
Xi=— X+ X; + X,
= — (58 — 47 + 32)
= — 43 ohms
Zy' = 2R, + 2/X, 4+ R 4+ jX + X,
Ry = R+ 2R
= 100 — 48
= 52 ohms.
Xy =X+ X,+2X;, =0
Xy = — (X + 2X,)
= — (58 — 94)
= 36 ohms.

Thus in order to tune the array correctly, it is necessary to insert capacitive reactances in the
outer members and an inductive reactance in the centre member. In practice this tuning may be
achieved by suitable adjustment of the length of the radiator, or by the addition of a susceptance
in parallel with the aerial instead of a series reactance. Such susceptances may take the form of
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short lengths of non-radiating feeder line. It is obviously necessary to supply the outer aerials at
a higher voltage than the centre one, i.e. V, =V, = 1-65 V5. Since the aerials are carrying
equal currents, we may refer to the radiation resistance of the whole aerial without ambiguity.
Thisisequalto R," + Ry’ + Ry’ = 208 ochms, the average resistance per radiator being 69 ohms.
It is found that as the number of parallel syn-phased dipoles is increased, the average resistance
per aerial falls slightly, approaching about 56 ohms for an infinite number of aerials. On the other
hand, if —% aerials, spaced %apart, are fed with equal currents having a progressive phase difference
of 180°, in order to obtain an “ end-fire " diagram, a repetition of the above calculation gives the
total radiation resistance of these aerials as 416 ohms, an average of 139 ohms per radiator.

Effect of Z, between radiator and reflactor

50. Let us now consider the action of a reflector aerial more fully than in paragraphs 33 and
34. In the notation previously used let A and B be two parallel vertical aerials separated by a
distance d, A being energized by the application of an oscillatory voltage V, and B being un-

energized. Let their self-impedance operators be %,, Z and their mutual impedance operator zy.
By Kirchoff’s law

v=z‘I‘+leB .. .. .. .. .. .. (39&)
0 = 2,1, + z,1,. .. .. .. .. .. .. (39b)
The current in the reflector B is
= _
IB _ zB IA
== mi,.
zl Zl/ehl
Thus S AR
! Zy Zs [On
Z -
= 2‘:’/ 7+ 8y — by
(zy)?
V= le — z, i L
V [ (ZM)2
TA == 2y
. Zy)?
=R, + ]XA—L?i)— |27 + 204 — 0y
“B
. Zy)?
= R, -+ ]XA"(Zn) [26u — 65
B
r _ (Zl)2 _
so that R, =R, A (264 — 65) . . .. .. (40a)
B
2
XA’ = X‘ — (Zl) S'l.ﬂ (20n - 0!)' P . .. . (40b)

Zy



CHAPTER XV.—PARAS. 51-53

51. As would be expected, then, the presence of the reflector modifies both the resistance and
the reactance of the energized aerial. The polar diagram is calculated by methods already ex-
plained. If I'yis the field strength in the horizontal plane in the direction 6 when the reflector is
absent, and I the field in the same direction with the reflector present, for the same input power,

r,=r, J%{1+M2+2Mcos (ﬂ-—zTndcos 0)}

1+M=+2Mcas(ﬁ—%i‘dcos 6)
—r, . L4

1—-M Zu cos (26y — 0Og)
R,

A study of the above results will show that it is almost if not quite impossible to fulfil the con-
ditions required to give a horizontal polar diagram corresponding exactly with fig. 8 C 3. To

obtain the latter diagram it is necessary to have m =1 / % Now M = g—" and Zg cannot be
B

less than Ry. If the aerials are ;iidipoles on a perfectly conductive earth, the minimum value of

Ry is 100 ohms. The current in the reflector aerial leads on that in the energized aerial by an

angle g = 180° 4 8y — 6y, and if Zz = Rp, 85 = 0. Thus the mutual impedance should have a

phase angle of — 90°. Reference to fig. 25 shows that 6y = — 90° when the spacing is approxi-
n

mately 0-41 and Zy is then only 60 ohms, so that m = 0-6/ g instead of 1/ 7

52. The above position may be summarized by the statement that it is impossible simul-
taneously to fulfil the conditions that the forward radiation shall be double that of the single
energized aerial, and the backward radiation absolutely annulled, by the use of a single reflector
aerial. So far as it is possible to generalize, it may be said that in the case of a single aerial with
reflector, both tuned to the same frequency, the optimum spacing for maximum fcrward radiation

. . A .. _r 1 . .
is approximately o and for minimum backward rad1at10n,;. For the optimum ratio of for-

ward to backward radiation, the separation should be about 0-284. These results are only of
practical importance when a single energized member and a single reflector are used. When
reflector aerials are used in conjunction with arrays consisting of several radiating members, the

spacing is not critical, and it is found that a spacing of -; is as effective as any, the reflector being
usually slightly mistuned as explained below. In certain designs, particularly on the higher

frequencies, a spacing of 21 is sometimes adopted.

Mistuning of reflector

5§3. It is possible to obtain a near approach to the desired cardicid diagram by mistuning the
reflector aerial, the degree of mistuning being dependent upon the spacing ; when this expedient

is adopted the 4 Spacing is in most circumstances as effective as any other. For any given set of

conditions, the horizontal polar diagram is easily calculated from the expressions given above,
particularly since, if only the shape of the diagram is required, it is sufficient to plot the portion
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J 1+ M?*+4 2 M cos (f — ?l; d cos 6). The method may be seen from the following example.

y)

If A and B are vertical—% aerials,z-apart upon a conductive earth, A only being energized, the

radiation resistance of each wire will be 73 ohms and the dead-loss resistance may be only 2 ohms,
so that the total resistance of each is 75 ohms. It is not suggested that the dead-loss resistance
can be kept within so low a figure in practice, but it will be seen that unless the dead-loss resistance
is very low the desired diagram cannot be obtained.

54, For—i-: 0-25, fig. 25 gives Zy /6 as 80/ —35. Suppose the reflector to be mistuned,

having a positive, i.e. {inductive) reactance, its impedance being Zy [45°.
Ry 75

Then Zy = 205 6, = 5707 = 108 ohms
Ly 80
and M =Z; = 1-0—6 = 0-755
M= 0-57

The angle g by which the current I leads on I, is given by
B = n -+ 0y — 0 = (180 — 35 — 45) degrees
= 100°

Substituting these values of M and B in the expression 1 + M2 + 2M cos (p — 2Tn d cos 6) we

obtain 1:57 4 1-51 cos (100 — 90 cos 0) ; when ¢ = 0, cos 0 = 1, (100 — 90 cos 6) = 10.
1:51 cos 10 = 1-486
1-57 + 1-486 == 3-056.
Hence the field in this direction is

r,= rAN/%-:-,\/:s-oss.

Ignoring the terms I, '\/ ;—;‘,, which give the scale of the diagram
A

I, = 4/3:056
= 1-76.
When 8 = 180, cos 8 = —1, (100 — 90 cos 6) = 190

1-51 cos 190 = —1-51 cos 10 = —1-486
1-57 — 1-486 = 0-084

4/0-084

= 029

T'ig9

The field in other directions is found in the same manner and so the shape of the horizontal polar
diagram is determined. Actually a good approximation may be found by calculating I'y and I'g
as above, and in addition, I'yy and the minimum field. The field I'y, is obviously
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/1 4+ M2 4 2M cos B; in the given example this becomes 4/1-57 4 1-51 cos 100°
= 4/1:57 — 1:51 x 0:1736 = 1-15. The minimum field obviously occurs when

cos <,8——%;—d cos 0) = —1,1.e. when (5 — 3_(_3;)_d cos 0) = 180. In the present instance we have
100 — 90 cos 8 = 180
€os 0 = —g
6 = 153°

The field I is equal to 4/T - M? — 2M = 4/1-57 — 1-51 = 0-245.

55. With regard to the scale, we have to find I, the field which would be set up by the aerial
A alone. This is equal to gg-I 1 f(9). Geometrically f(p) isidentical with fig, 6 and its magnitude

in the horizontal plane (¢ = 0) is unity. Next the expression \/ %‘5, must be evaluated. From
A

equation 40a,

R, —1——!‘ico (20 — 05)

R, = T LR T
=1 — M%cos (204 — 0y).

In the present example this becomes

R, 0-755 x 80

E-—l————~73 cos (— 70 — 45)
= 1-35

K — 074

A
R, .
R = 0-86.

Finally, allowance must be made for the radiation contributed by the virtual image of the array.
This entails the introduction of a Vertical Distribution Factor D(p) ; since the centre point of the
A
4
but must be turned through 90° so that it has the value 2 along the ground (¢ = 0, 8 = 0).

Thus the RM.S. field in the direction 0 = 0, along a perfectly conductive ground will be

2 %08 x1:75=3 X 6—:) I and in the direction 6 = 180, 2 < 0-86 X 0:29 = 0-465 x %91.

array is — above the earth, the appropriate factor is geometrically identical with fig. 8 A 5,

The complete horizontal polar diagram is therefore that shown in fig. 28b. From the manner
in which it is obtained it is obvious that if the diagram is rotated through 90° about the axis
XX, and then multiplied by the appropriate values of f(¢) and D(¢p) as defined above, the vertical
polar diagram (fig. 28c) is obtained. A few points so calculated will give a sufficiently close

approximation.
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Fic. 28, Cuapr. XV.—Example of calculation of polar diagrams.

Effect of dead-loss resistance

56. The importance of low dead-loss resistance in the reflector aerial can easily be
appreciated. Again referring to fig. 8, which, it will be remembered, is constructed on the basis
of equal currents in the two aerials, it is seen that if this condition is fulfilled, an approach to the
desired unidirectional diagram is attainable even if the respective currents are not in
quadrature. For example, compare diagrams B3, B4, D2, D3, with diagram C3. If the
two currents are not equal, however, the attainment is much more difficult, and it is

therefore desirable to make M approach unity'as closely as possible. Since M = %‘— and Z, is
. B

constant for any particular spacing, M can only approach unity if Zg is kept small. Even with

zero dead-loss resistance and zero resistance, Z is equal to the radiation resistance, e.g. for a 3

dipole, Z; must be more than 73 ohms. This considerably narrows the range of% from which a

suitable value of Zy can be chosen.
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Influence of finite conductivity and permittivity ot ground

57. We may now briefly discuss the errors involved in the assumption that the surface of the
earth is a perfect conductor, so far as its properties as a reflector are concerned. Since we are only
concerned with the earth in the vicinity of the aerial, we shall consider the surface to be plane as
before. Fresnel's equations governing the reflection of a plane electro-magnetic wave at a plane
surface are given in the previous chapter, in terms of the angle of incidence as defined for physical
purposes. For the present purpose, however, it is more convenient to state them in terms of the
ground angle as previously used in this Chapter. The ratio of the field strength on reflection,
I, to the incident field strength Iy, is then a complex number. Two different solutions occur
according to the plane of polarization of the incident wave. For a wave polarized in the plane
of incidence, i.e. vertical polarization, we have

It _ i6, __
.Ti_K'&_K'E =k,

while if the wave is polarized perpendicularly to the plane of incidence, i.e. horizontal polarization,

I; X
Z = Ky /by =Ky = k.
T h/ h h € kn

In terms of the ground angle ¢, Fresnel’s equations become

.20\ . 2 . 20
(%“]—f—')Sintp—JK—COSlP—jT
‘ Lo 4y

e A
(x——jf)sinq}—{— x—cos%——jzf—g

K, =

\/ 0 . 20 .
xacosq)—j?—smzp
kh: = . . . .. - (43)
2 . 20 .
/\/M—-—COStP—-j?——}—Si'n(p

where » is the permittivity of the ground.
o is the conductivity of the ground in E.S.U.
¢ is the ground angle, i.e. the complement of the angle of incidence.
S is the frequency in cycles per second.

58. The expressions k,, ky are referred to as the complex coefficients of reflection for the
respective cases. Their moduli, K, and K, are always less than unity. The angle 6, or 6, must
be added to the phase of the incident wave to obtain the phase of the reflected wave. This angle
is always negative, and lies between 0 and — 180°. In using these equations it is most important
to observe the conventions which have been adopted in obtaining them. These are shown
diagrammatically in fig. 29. Taking the vertical polarization case first, I} and I} are both
considered to be positive in the upward direction, along the plane of the paper. In the case of

L T 7 z

(@) in plane of incidence (b) I" perpendicular fo plane of incidence

Fic. 29, Caar. XV.—Conventional positive directions of electric field vector.
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horizontally polarized waves I is considered to be positive when it is in a direction upward from
the surface of the paper, and the positive direction of It is considered to be downward, i.e. below
the surface of the paper. The importance of these conventions becomes apparent when the sum
of the incident and reflected waves is to be found. :

KLgcurves

59. As the computation of the reflection coefficient is very tedious, curves of K, 6, and
K, 6, for the different states of polarization and for several different kinds of ground surface,
are given in fig. 30 (Sheets 1 to 4). Once these are known the total field at a distance from an
aerial may be found by the methods already given. For example, take a horizontal dipole operated
at a frequency f, which is situated at a height A over ground for which ¢ and » are known, and
consider the total field at a point P at an angle ¢ to the horizon and at a distance 7 (>>4) from
the aerial. Let the aerial current be I £, Then, due to the aerial alone, we have at P a field

2n
r

:G_OIEj(ng_T )
14

Ya
Also, due to the wave reflected at the ground, a field
il ot + 2 =20 4 2hsing)
- '6—:) kh I & [ z A ]'
Paying due regard to the conventional positive directions of y, and yg, therefore,

n  2n N . 4n
O j(wt+~———r) 78 —jchsing
y,:ils 2o [I—Khshe A ]

¥

VB

=yA[1—-Kh/9h—-i;—thSintp]. . .o .a .o (44)

60. (i) By.methods already explained, the amplitude of the total field is found to be

fﬂ,=1‘1\/1+(K,,)2_2thos<oh—i*7”hsmqo> S (45)

and we are not further concerned with its phase. The expression under the square root sign is

therefore a factor by which the field strength f}, due to the aerial alone, must be multiplied, in
order to allow for the effect of the earth. It is seen to be of the same form as that which takes
into account the mutual impedance between an aerial and a reflector, but 6y is a function of the
angle ¢ instead of being constant for a given set of conditions.

(ii) If the above calculation is repeated for the case of a vertical dipole, with due regard to
the sign convention, the amplitude of the total field is found to be

ﬁT=ﬁAJ1+(K,)2+2K,cos(6,—-%nhsmq:) .. .. (48)

which is of a similar form to that obtained for horizontal polarization. The quantities under the
square root signs are the Ground Reflection Factors and may be denoted by g,{¢) and en(p)
respectively. “Once these factors have been calculated, they may of course be applied to any
array which in free space would radiate equally well above and below the equatorial plane,
provided that % is taken as the height above earth of the electrical centre of the array. The
R.M.S. field at any point having co-ordinates 7, 6, ¢, may therefore be written

r= 6;9. F.f(@). o(®. I..
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61. Referring now to the curves showing the variation of kn with ¢ (figs. 30, Sheets 2 to 4)
it is seen that for ground of moderately high conductivity, K may be of the order of 07 or more
(for ¢ = 90°), gradually increasing to unity when the radiation reaches the ground at a very small
angle to the horizon. For very high values of o, e.g. for sea water, Ky is rarely less than -96
(for @ == 90°) and may therefore be taken as unity for practical purposes. For a surface of hard
rock, on the other hand, Kj {for ¢ = 90°) may be as low as 0-4 or even less. Given the values of
%, o and f, it is not difficult to calculate the reflection coefficient for vertical incidence (i.e. ¢ = 90°),
as in the following example.

Example—1f o = 108 ES.U. » = 6, f = 107 cycles per second, find the reflection coefficient
for vertical incidence.

When ¢ = 90°cos ¢ = 0, sin ¢ = 1

x——j?g—l
Ky = J
o 20
”—.—: +1
\/ 77
20
—_=0-2
f

_v/6—702 —1
/6 —702 41
V6—702=1v—jx
6 —702=192— 2fvo — &?

CovE— a2 =6,

ky

2va =0-2
vt — 29292 4 ot = 36
4y202 = 0-04

v 29202 4+ ot = 36-04
v? 4 a? = 4/36-04

= 6-0033
(»2 + o) + (»2 — %) = 12-0033
v3 = 6:00165
v = 4/6-00165
= 245
and
«? = 0-00165
a = 0-0406
v — jou — 1
ky = v —ja + 1

_2:45 — 1 — ;7 0-0406
T 2-45 41 —;0-0406
_1-45 — 700406
T 345 -7 0-0406

1-452 1 0-0406°
Ky =, | 37457 7 0-0406°

=042
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When an approximate value for Ky (¢ == 90°) has been obtained, the approximate curve for
other values of ¢ may be sketched in by noting that it closely resembles one quarter of the
negative portion of a sine curve. The error in drawing the curve in this manner is greatest at
about 30°, but even then is probably not greater than that occasioned by our imperfect knowledge
of the electrical properties of the particular ground.

62. Turning now to the curves showing the value of Ky, it is at once evident that the phenome-
non is more complicated than in the case of horizontal polarization. It is on this account that it
is difficult to draw general conclusions as to the radiating properties of vertical aerials. The
magnitude Kymax) of the reflection coefficient for ¢ = 90° is the same as for horizontal polariza-
tion. This is obvious irom physical considerations, for strictly, ‘ vertical ” and ‘* horizontal ”
polarization have no significance for a wave perpendicularly incident. As the ground angle
decreases, Ky also decreases and passes through a minimum value at some angle gy, afterwards
increasing fairly rapidly, and reaching unity when ¢ == 0. The angle g5 is known as the pseudo-
Brewster angle from its relation to certain phenomena in optics. If the minimum value of Ky and
the pseudo-Brewster angle ¢y are known for any particular kind of ground surface, the curve may
be sketched in with sufficient accuracy for most purposes by observing the general trend of the
calculated curves given. To facilitate this procedure, the curves shown in fig. 31 may be used.

63. The phase angles 6y and 6, are also plotted in fig. 30 for conditions corresponding to those
for which Ky and K}, are given. Again it is obvious that for ¢ = 90°, 0, = 6 and is rarely more
than a few degrees. In the case of horizontal polarization, the angle 8, gradually decreases with an
increase of ¢ and is zero when ¢ = 0. If its maximum value is known, the curve may be sketched
in with fair accuracy by noting its general resemblance to a sine curve as in paragraph 62 above.
As an example of the calculation we may find 8y for the conditions previously discussed.

In paragraph 61 we found, for ¢ = 90°

_1:45—70-0406

= 3745 — 700406

(1-45 — 7 0-0406) (3-45 + 7 0-0406)
3-452 + 0-04062

54 00165 — 7 0-14 + j0-06
o 11-9

Kk

. 5—70-08
R VR
0-08

* @, = — tan—1
. 6p ta 5

= — 0° 55’

The above example has been worked at some length, but the following ““ short-cut "’ should be

noted. When \/x——j%g:v—ja has been evaluated
Kpfbnh _v—1—ja
(P =909 "y 4 1 — ja
_{o—=1) —jd{e+ 1)+
- (r+ 1)2 4 a?
_ V4 a?—1—72a
RN R LT
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and when, as is generally the case in practice, »2 >> a?

Ky _'-”'"_,I -
(¢=90°)'-_',+1

2u : \
LI -1
Bh - tal'l vz - ]-
4] ]
e i
5 =80 B
. 10 K =925 , 1 :
g Y /4
8” 15 .}{__ L1 /,7
=) 519 A
& o8l e
W=7 1
uil wd f
25 H=2 =
50 1]
|
|
> > il
LA
Ve 1
~ o /4 v
= ’/ /
= /u /1
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ol 05 1 5 10 50 100 500 1000 5000 10000

Fic. 31, Cuaap. XV.—Pseudo-Brewster angle @, and corresponding reflection coeffitient
Ky (min.) for various kinds of ground.

64. The variation of 6y with ¢ is very different from that of 6, Commencing with a small
negative value equal to 8, when ¢ = 90°, it is.seen to increase in size very gradually until ¢
approaches the value @3, when a very rapid variation takes place ; when ¢ = g3, 0y = —90°, and
for angles smaller than g5, 6y continues to increase in size, becoming — 180° when ¢ = 0. The
minimum value of Ky and the corresponding angle g5 are given in fig. 31 for various values of
» and i.—ain order to facilitate the construction of approximate curves of Ky and 6,.
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65. (i) When the appropriate values of K and ¢ have been obtained and tabulated for any
given conditions, the corresponding Reflection Factor can be plotted for various values of ¢, and
the resulting polar curve used as a correction factor for the free space diagram of any aerial or
aerial array, taking the place of the Vertical Distribution Factor. As an example, the expression

,i/l 4 K2 4 2Ky cos (BV — fl—; h sin <p) which is appropriate to vertically polarized radiation,
has been plotted in thin solid line in ﬁg. 32 for the following conditions, viz., x = 20, 0 = 4 X 108,
=108 h= 2 No great accuracy has lﬁgeen attempted as the intention is merely to indicate the

kind of curve to be expected. The curve shown in dotted line represents the Current Distribution
Factor for some unspecified form of aerial. The curve shown in heavy line is the polar product
of the two former curves; and gives the shape of the vertical polar diagram of the aerial or array.

Absolute values of R.M.S. field strength are of course obtained by multiplying by the factor %—O E.I

Fic. 32, Caar. XV.—Vertical pdiar diagram of aerial over ground,
0 =4 X 10 x = 20, (f = 10% & = ).

(ii) The foregoing theory assumes that at the boundary between the air and ground, the

wave front is a plane surface. This incorrect assumption does not lead to significant error in the
case of horizontal polarization, but with respect to vertically polarized waves, the field radiated
along the surface of the earth is not absolutely zero as the simplified theory indicates. According
to certain physicists, a vertical aerial at ground level gives rise to a surface wave additional to
that derived from the simple radiation theory, but this view is not unreservedly accepted. Its
protagonists agree that if this surface wave does exist, it suffers very heavy attenuation within
a few wavelengths from the source, and need not be taken into account in long distance
H/F and V. H/F communication. ' '

TRANSMISSION LINES

Theory of transmission line

66. In Chapter VII reference is made to the propagation of electro-magnetic waves along a
conductor such as a transmitting aerial. It is now necessary to enter somewhat more thoroughly
into the theory of electro-magnetic waves on transmission lines such as the radio-frequency
feeder lines used for supplying power from a transmitter to an aerial array, or from an aerial
array to a radio receiver. The complete theory is also applicable to telephone and voice-frequency
L/T lines. Before dealing with the mathematical theory, the physical aspect will be discussed.

¥

o

-
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67. Consider a transmission line consisting of a pair of parallel wires of high conductivity,
perfectly insulated from and at a considerable height above the earth. Let these be connected to
a battery by means of a reversing switch S as shown in fig. 83. A rapid reversal of the switch S
is then equivalent to the application of an alternating E.M.F. having a perfectly flat-topped
waveform. If the switch is closed at a given instant, so that the point A is at a positive potential
with respect to the point B, an electric field will be set up between these points. The field does
not however appear 1nstantaneously at all points along the line, we may in fact consider the
battery continuously to generate lines of electric force. Thus, 1f a single line of force appears
between A and B when the switch is closed, and new lines are constantly being generated, the
second line repels the first, causing the latter to travel along between the wires,. As lines of
electric force (unless closed upon themselves) must terminate upon electric charges, the movement

- of the electric lines implies the existence of moving electric charges, i.e. an electric current in the
wires themselves. Thus, associated with the moving lines of electric force, we have a magnetic
field consisting of a number of closed magnetic lines forming concentric circles round each

. conductor. The direction of the magnetic field relative to the direction of the electric field and

the current is found by the first law of electro-dynamlcs
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F1c. 33, Cuapr. XV.—Electric field between parallel wires.

68. Now consider what happens when the travelling electric flux reaches the end of the line
remote irom the battery. If the Wires are on open circuit, the lines of electric force can travel no
further, and must tend to “ pile up” at the points CD. In being brought to rest, however, they
set up a magnetic field of opposite polarity to the original, and the growth of this field in turn
recreates new lines of electric force. Thése lines now travel back towards the battery. This
phenomenon may be summarized by the statement that on arrival at the open-circuited end of a
transmission line, the electric field is reflected without change of phase, while the magnetic field
i reflected with a phase change of 180°. At the moment of reversal, thie magnetic field strength
must fall to zero, and the electric field strength is doubled. If the remote end of the line is closed
upon itself, forming what is called a short-circuited line, the reflection process is somewhat
different. Instead of tending to pile up at the end, the electric lines must gradually collapse.
In collapsing, however, they give rise to an additional magnetic field which travels on round the
short-circuited end of the conductor. This magnetic field in turn recreates the electric field as
before but with reverse polarity. At the exact instant at which the electric field is zero, the
magnetic field strength is doubled. If the remote end of the line is connected to an impedance,
partial reflection will occur, unless the terminal impedance has a particular nature and magmtude
which will be dealt with later.
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General equations for line current and VOltage

69. Although the foregoing physical aspect enables one to form a crude mental picture of
the process of reflection it is necessary to enter somewhat more deeply into the effects of the line
constants upon the mechanism of propagation. The line constants are first, the resistance,
R (ohms per unit length), second, the inductance, L (henries per unit length), third, the capacitance,
C (farads per unit length), between the two lines (or between line and earth in an * earth return "
circuit), and fourth, the leakage conductance G (siemens, or mhos, per unit length). The resistance
and inductance are measured per unit length of line, not per unit length of wire. It will easily
be seen that in an element of line of length dx, the resistance will be R.dx, the inductance L.dx,
the capacitance C.dx, and the leakage conductance G.dx (fig. 34). Suppose, then, that an EM.F.
is applied to one end of the line, which will be called the input, or sending end, setting up at a

Il Rdw (-]

[ 1 T
: s : ' X +dx
: S B P BB
I S i
@ G = 382 ImT I3t IRI (dz
‘ T = ' i !
' el { H i i }
H . ] 1 ]
: I-(—“\:t :, :, :(l-dl)ﬁ

Fic. 34, Cuar, XV.—Notation nsed in transmission line theory.

point distant x centimetres along the line a P.D., V. If we now take an elementary length of line
dx extending from x to x - dx, the P.D. between x and x -+ dx will be — dV, where

— 4V = (Rdn) T + (L) 2

If the current in the line at the point x is I, it will be I — 41 at x -+ dx, owing to the element of
current dI which flows in the capacitance C. dx and leakage conductance G. dx. 1t is easily seen
that

av

—dl = (G.dx) V 4 (C.dx) 7L

Hence the rate of change of V and I, with respect to the distance from the sending end, is

av dX
B ZAiir )
dl av

S,
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Solution for sinusoidal conditions

_ 70. The above expressions are perfectly general, and subsequent work will be considerably
simplified if the applied E.M.F. is considered to be sinusoidal. Under these conditions instead of
the above equations. we may write ' S

_g=(R+]'wL)I .. .. .. e (i)
_%.___"(G_{_jwc)v .. .. .- .. (2)

because to a sinusoidal EM.F,, each unit length of line offers a vector impedance R + jwL, while
shunted across each unit length we have a vector admittance ¢ + jwC. Equations 1and 2
are the fundamental basis of the theory of the transmission line. ' In developing the latter, we
must first separate the variables V and I ; to do this differentiate equation 1 with respect to x :—

aw , aI
—m = (R +](0L) E.
o al .
Substituting for i from equation (2)
awv . .
7z = (B4 jol) (G + o) V
= P . . o .. (3
In a similar manner we obtain
a4 .

71. These equations define P = /(R + jwL) (G + jwC) = « + §4. It will be observed

ohms % siemens: 1

length ©° length =~ length’
like P, Px, etc., are mere numbers. The complex quantity P is called the transfer constant of
the line, and consists of a real part « called the attenuation constant, and an imaginary portion g

called the wavelength constant, or latterly, the phase constant. Equations 3 and 4 are
standard forms and the solutions are known to be
VM, ¥ inP” )

1=, % Nl U ©)
where M,, M,, N,, N,, are quantities which depend upon the terminal conditions of the line, and

are not entirely independent of each other. Since £” is a mere number, M,, M,, etc., must be

that Pis complex and possesses the dimensions

so that quantities

vectors and are therefore printed in Clarendon. 1t will be shown that M, = M, z,, N, = — M, z,
where
0=/ EF 7T

Relation between M,, M,, N, N,
72. If the values of V and I given in equations (5) and (6) are inserted in equation (1) we

obtain

P(Mle—Px—NISPx)

—R+jon)(Me PPN, L ()
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and if inserted in equation (2)

P(M,e Pz —N, st) G+]mC)(M1 x_l_ngPx).. - - .. (7b)
On multiplying across by CT+—IJ§EC
P(M,s +N18Px) G_f_:wc(mze P_ _Nast)

= (R +jor) (M e ¥ — N,
Adding equations (7a) and (8) '

Px . — Px

|
pa), O - I
|
2PM, s " "7 = (R +joL) x 2M, & |

Subtracting (8) from (7a)‘

"'ZPNIG —--]—(R—[—-wa)XZN,B | .
N1==—N,—R—+Fj—£ '
= —N; %,

 JR+jeL. : N .
The quantity %, = J G‘“—{%a;'tf is of great importance ; it is termed the characteristic impedance

or surge impedance of the line.

- Introduction of hyperbolic functions
73. Equations (5) and (6) may now be written /o

V=M18—-Px+N18Px Ve .. . . e (9)

M, —Px N, Px :
I="e¢ — 17, . e e .. (10
= 5 (10)
It is now convenient to introduce hyperbolic functions, writing

cosh Px -+ sinh Px = ¢ Pz

cosh Px — sinh Px = & . )
so that (9) and (10) become
V == M, (cosh Px — sinh Px) + Ny (cosh Px - sink Px)

= (M, + N,) cosh Px — (M, — N,) sinh Px, .. .. .. (11)
1=%0‘[(MI—N;)cos_hPx-(_ml-;-'n,)sinhpx] .12
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Note that we have reduced the number of quantities depending upon the terminal conditions to

two. Provided M, and N, can be determined we are able to obtain complete information regarding
the current and voltage distribution in the line.

Equations for infinite line ,

74. The simplest problem to consider, and one of great importance because it brings out the
physical signification of z, and P, is a line of infinite length to which a known voltage V; (i fot
“input ") is applied to the sending end. At the point x = 0 we have V. =V, ; inserting known
quantities in equation (11)

Vi= (M, + N cosh 0 — (M; — N,) sinh 0
(cosh O = 1, sink 0 = 0)
Vi == Ml + Nl

On the other hand, it is obvious from physical reasons that as we go further from the sending
end both V and I become smaller, and ultimately when # > 00,V 5 0,1 > 0. But when

% = oo, both cosh Px and sinh Px approach the value % ¢"*, and therefore

1

: Pzx
Veso=[M+N) — M, -N)]; =o.

Now 1 & is not equal to zero, therefore

2
M1+N1— (M.l““N1) =0
SNy =0
But M+ N =V
o vi = M;,-

Inserting in (11)
V = M, cosh Px — M, sinh Px

=V, (cosh Px — sinh Px)

_'=vis_'P", .. L .. .. .. (13)
and in (12),
I= % (cosh Px — sink Px)
0
_ Vi —Pux . .. .. . o {19
—.zoe

Magnitudes of « and 5
75. As already stated P 4/(R + joL) (G + joC) = « 4 jB. It follows that
RG + joCR + joLG — o®LC = o® + 2jaf — p* '
a? — p2 = RG — o?LC .. . e .. .. (15a)

3 2«8 = o (CR + LG)

(RG — »?LC)? = a* — 2a2 82 4 pt
w? (CR -+ LG)z = 402 ﬁ2 |
of + g2 = +/[RG — w’LC)* + o® (CR + LG)? . .. (15b)
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From equations 15a and 15b we obtain

o= J % {V(Rz T @°L3) (G° + «C? + (GR — m‘*’LC)} .. (15c)

p= J ; {\/(Rz F o' & .09 — (GR — szC)}. .. (15d)

Physical significance of « and 3
76. Equation 13 may be written

ngie—(a+fﬁ)x

= Vg ~%g i

= (V‘ e~ ‘"‘) (cos px — 7 stn Px).

The portion within the first pair of brackets may be called the amplitude factor. It indicates
that the amplitude 7° of the voltage at « is equal to the amplitude 7% of the input voltage divided

by € % The factor within the second pair of brackets is a vector operator of unit magnitude.
Its presence signifies that the phase of V lags behind that of V; by an angle g». Thus if

vi = ¥%i cos (wf + o)
v, = —7%‘ cos (ot + tp — Bx).
£

In a very long or infinite line, therefore, the voltage amplitude at a distance # from the input

_end decreases exponentially by the factor ¢ - while the phase angle lags behind the phase at
the sending end by an angle gx. At a distance such that gx = 2 the line voltage is in phase
with the supply voltage. Similarly if fx = 4=, 6=, etc., in fact, the line voltage is in phase with
that at the sending ends at all points where px = 2n#%, and # is an integer.

Physical significance of z,.
77. We may now consider the current in an infinite line. At the sending end, where x = 0,

let it be I, From equation (14)

Vi \'A

Te0 =Y

L=
2, %

(16a)
Hence z, is the quotient of voltage and current at the input end of an infinite line, and is therefore
the input impedance of such a line. Tt also follows that equation 14 may be written

L=Le—-P* _, - - . . s - (1D

This equation is of exactly the same form as equation 13 and may be interpreted in the same
way, i.e. in passing along the line the current is attenuated and its phase delayed just as in the
case of the voltage. Further, at any point in the line

v,

=% - e e .o ... .. (16b)

thus %, is the ratio of voltage to current at any point in the line.

o8

‘)
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Short-circuited line:. _ :

78. We have now shown the physical meanings of the quantities «, # and %), and may applg _

these to more practical cases, e.g. a line of finite length terminated by an impedance of some kind.
Consider a length of line  which is short-circuited at the output or receiving end. Let a voltage
Vi be applied at the point x = 0. S
Then the following data are known :—

atx =0, V=V, =YV,

. atx =L V=V,=0.
Inserting these conditions in equation (11)
Vi=M, +N,

Vi=0= (M, + N,) cosh Pl — (M, — N,) sinh Pl .
=V cosh Pl — (M, — N,) sinh Pl
Vi cosh Pl

M Ne= TP o
=VicothPl .. ... .. .. .. .. .. .. (18
so that equation 11 may be written .
’. V =V (cosh Px — coth Pl sinh Px) .
__ g Sinh P (l — %)
==

and equation 12 becomes '
I =Yz;i (coth Pl cosh Px — sinh Px)
_ Vi cosh P (l—1)

Now at the input end, # = 0. The current entering the line is therefore "

' = 2, sinh Dl
" Zytanh Pl .. .. .. .. .. .. .. (19

Thus we have a most important result, namely that the input impedance of a length [ of line
short-circuited at the end remote from the input terminals, is 2, fank PI.

Open lines o

79. Another case of interest is that of a line of length 7/, with the output end on open circuit.
At the input end x = 0, V=, while at the output-end x =17, I=0.
From equation (11) 7
Vi=M, + N, . = )
0= %o-{(m1 — N, cosh Pl — (M, + N,) sink P!

 sinh Pl
M, — N, = (M, + N) 2o

=Vitanh Pl .. .. - .. .. . . .o (20

PARAS. 78-79

s
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and the line equations become

V, =V, cosh Px'— V; tanh Pl sink Px
I, = z’i{tanh Pl cosh Px — sinh Px}

or " -
vxzvicﬁskP(l—x) |
cosh Pl .g-x :
Y YR oy
R cosh Pl B
The input current is obtained by putting x = 0, hence
| Vi sinh Pl
" 3y cosh Pl
v,
—Wlu . .. .. . ‘-. . . (21)
Thus the input impedance of a length / of open-circuited line is z, coth Pi.
Line terminated by finite impedance
80. Having cleared the air by these preliminary investigations we arrive at the most im-
portant practical case, namely, a line of finite length /, terminated by a finite impedance of
% ohms, its nature being unspecified. As before it is known that V = V; at x = 0. At the other
end, where x = /, the current and voltage will be denoted by Ir and V; (r for * receiving ”’). Then
I is the current through 2. due to the P.D. V;, and
Ir "‘—'=Yrc
Zr
Putting V =V, when x = 0,
Ml + Nl = Vi
Since V; = 2.1, it follows that when x = [, equations (11) and (12) become
Vi cosh Pl — (M, — N,) stnh PL ——=—:1 { (M, — N,) cosh Pl — V; sinh Pl}
L]
Vi {cosh pr —}-%sinh Pl} = (M; — N,) {sz'nh pi —}——:;—cosh Pl} ‘
¢
\/ j{cosh Pl +% sink Pz} .
M, — N, = = 2 ~
sinh Pl - —z~cash Pl ' N\
0
hence for these conditions, equations (13) and (14) become
_ Zicosh P (L —x) + zysink P (I — %)
V=V 2; cosh Pl 4 z, sinh Pl v . - &
and
I—E Z. sinh P (I — %) + 2, cosh P (I — x) (24)
Tz Zr cosh Pl - 7, sinh Pl " h T
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Equations (23) and (24) give the voltage and current at any distance # along the line, For many
purposes we require to know only those at the input and output ends respectively. Putting x =
in (23) and (24,) '

Zr )
Vo=V Bt Bl - e &)
" l N . -
. II:V’Z:COShPl—'-zoS‘I:‘nhPI . . s . ‘e . (26)
while putting x = 0 in (24) gives

__ Vi u sinh Pl 42, cosh Pl

‘ Il = Eg- z,'cosh Pl+ Z, sinh Dl e .. . . .. (278.)
The input impedance is therefore’ : _

Zcosh PltZsinh P (27m)

2 sinh Pl +- 2y cosh Pl -

%=1,

Correctly terminated line ,
81. A very important case in practice is that which occurs when the terminating load 2 is
equal to the surge impedance %, of the line. When this is so, equation (24) becomes

Vi 2, (sinh Pl 4 cosh Pl)

L = %, 2, (sink PI + cosh Pl)
Vi :
-5 e e (2%)
. while '
L — Vi .
* 7 2y (cosh Pl + sinh Pi)
Vi '
- . Pl
=V -H O 1)
z, _

This is exactly the same expression as was found in paragraph 77 for the current I, at a distance
from the input end of an infinitely long line. It follows then that if a line of finite length is
terminated by an impedance equal to its surge impedance, all the energy reaching the output
terminals of the line passes into the load impedance, which is usually the desired object. When
the operating conditions are such that 2. = %, the line is said to be correctly terminated. When
incorrectly terminated the whole of the received energy does not pass the output terminals, a
portion being reflected back towards the input end. The importance of avoiding reflection in a
transmission line may perhaps be emphasized by comparing it with an aerial. With a few
exceptions, aerials are built up of conductors with free ends, so that reflection occurs, and the

length (including the image in certain cases) is made ‘electrically equal to a multiple of % so that

stationary waves are set up in the aerial. By this means we obtain syn-phased currents over
each half-wavelength of wire (approximately) as explained in the early paragraphs of this chapter.
The energy supplied to the aerial is then partly radiated and partly degraded into heat. Ina
transmission line, however, the object is to convey as much energy as possible from one point
(the transmitter) to another point (the load impedance), avoiding all unnecessary dissipation

“en route. For this conveyance to be highly efficient, then, the load impedance must be equal to
the surge impedance of the line.
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82. Returning now to the expression for the current in the load impedance in the case of a
correctly terminated line, i.e.

L =Y_i g—H
2,
putting P = «-j8
L=Ve=a, =8
2,

We have already seen that the magnitude of the attenuation constant « depends upon the leakage

conductance G and resistance R, per unit length. If G, R and / are very smalle ~ i is very nearly -

unity and the received current becomes

(29)

At radio frequéncies, « is given by the following approximate formula which is derived from
equation (15¢) ; '

R | GZ,
“=2z, 72"

and is always a very small quantity. Suppose the line to have a résistance of 20 ohms per mile
and an insulation resistance of 5 megohms per mile. One mile is roughly 1-6 X 10° centimetres,
ie. R= 1-210—4 ohms,é =5= 108 X 1:6 X 108 ohms per centimetre, and G = 1-25 = 10~12

siemens per centimetre. If the surge impedance of the line is 500 ohms, the attenuation
constant is :
" 1-2 i 1-25 x 500
T2 x 10* x 500 1012 x 2

= 1-203 x 107,

Radio-frequency feeders _

83. In connecting an aerial array to its transmitting or receiving equipment, it is necessary
to utilize a transmission line consisting of either a twin wire line or a concentric line. In either
instance the length rarely exceeds a few hundred feet, and the line may be designed to have a
very low attenuation constant. The theory may then be considerably simplified by assuming
the attenuation to be negligible, i.e. that the line itself has negligible resistance and perfect

insulation so that in the equation P = /(R -+ joL) (G + joC), R = 0 and G = 0. Then
P = a+ jB = 1/joLl X jwC = jwy/LC, and therefore « = 0, p = wy/LC. Similarly the

equation zo‘= '\/ g%:% becomes 2, =" J 'é In these circumstances 2, is not complex and

therefore possesses no reactive component, i.e. the surge impedance is purely resistive, and may
be denoted by Z,. When its non-reactive nature is to be particularly stressed it will be denoted

by R,.
Twin wire feeders
84. The inductance of a pair of parallel wires 'of radius #, separated by a distance D, is

L = g%)é log 1o 17) henries per centimetre,

(3



U | | CHAPTER XV.—PARA. 85

and the capacitance A

C = ——I—Z—O-S—D farads per centimetre,
1018 Jog,, -

z, 52104 1018 D
= ST 2L 2% 1-208 /815

so that

The phase constant of the line is easily found :—
B = w+/LC
9-2104  1-208
N B T
24
T 3% 1010
_ 2
T ¢
where ¢ is the natural constant equal to the velocity of electro-magnetic waves in free space.’
Since{ = A, where 11is the wavelength in free space
Concentric feeders
85. A concentric feeder consists of an outer tubular conductor containing an inner conductor
which may be either solid or tubular. If D is the internal diameter of the outer tube and 4 the
external diameter of the inner conductor, its inductance and capamtance are given by the formulae
L = 41325 logye 3 henries per centimetre
C = _ 2416 farads per centimetre
D
10738 Jog,q i
and, therefore,
Z, = 138 log,, g ohms.
— It is easily shown that, as for the twin wire feeder,

gl

!
A

As stated in Chapter VII, where twin wire feeders are used, it is usual to arrange, if possible, that
the surge impedance is 600 ohms. This implies that the ratio 17) = 150. For example, 18 s.w.g.

wire has a diameter of -048 inch, and gives a surge impedance of 600 ohms if spaced 3-8 inches
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apart. The surge impedance of a concentric feeder is usually about 60 to 100 ohms, and the
copper losses are a minimum when g = 3-6, i.e. when the surge impedance is 75 ohms. For

ratios smaller than 2 the copper losses are very heavy, but they are not seriously increased by

#

an increase of %) up to about 8.
-
Properties of lines of various lengths

86. (i) The input 'impedance of a length / of line, short-circuited at the output end, is
%, = B, fank Pl Tf the attenuation is negligible, P = j§ = j%”,
2, = B, tanh 3; .

. . L L
Since, however, z, is a purely ohmic resistance of J o ohms,

. [0, 2
=1Jctan-;l... .. .. .. . .. .. (30)

i.e. z; is purely reactive and may be either positive or negative. The graph of the magnitude Z;
of the input reactance, against the length /, is plotted in fig. 35. It is seen that at the point

»

I =0,Z,=0. Aslincreases Z, assumes positive values, e.g. at I = i Z, = Z,, and increases

8
until at ! = g, Zybecomes infinite. In therange! =0to!l = g then, the line behaves as an
inductance, the value of which may lie anywhere between zero and infinity. Consequently, a
e
ER
éj) 3 / l’ J
2 [
Sy
N ped i l/
N |N° 0 ) /_\ /)\ 3\ /)\
! 4 2 2
v 2 4 y
=3 / Length of feeder']"
9 4
g5
S
&6
u ——

Fig. 35, Cuar. XV.—Reactance of short-circuited line.
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length of line may be determined which will act as an inductance of any desired value for a given .
frequency. Suppose we desire a line to have an inductance L’,

joL' = § Zy tan 224

2n wl’
tan b = 7~
2n —1-wL’
To=tr o
A -1 L’
l = é?t tan -Z;.

Example

Calculate the length of 600 ohms line which will act as an inductance of 5uH at a frequency of
5 M/cs.

3 x 108
A= g—x—l—o—s'— 60 metres
l—-GOtan—lz" X 5 x 108 x 5 x 108
T 2n 600
—q. -1 %,
= 9-56 fan 15
fan—1 —1—% =14° 41’ or 0-25 radians
I=9-56 x 0-25
= 2-4 metres.

In the range g-to —;', tan -?—;—?l is negative and the reactance of the short-circuited line is capacitive,

varying from infinity to zero. By a suitable choice of /, its reactance may be of any value whatever.
If it is required to obtain a line of capacitance C’ farads,

v 1 ) on
JoC ~ 7 Zotan—
2n 1
tan Tt =— 307, )

= —’Ltcm—l (_. _l.__>
2n wC'Z,

A . A
Over the range 5 to A the curve repeats the values in tne range 0 to -i-and SO om.

(ii) The input impedance of a length of line having its output end free, is Z; = Z, coth PL.
For negligible attenuation this becomes

Z,=—jZocot2—:l._‘.. ce e .. (31
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As before, then, the impedance is purely reactive ; Z;is plotted against / in fig. 36, By using a

length of line less than A we may obtain a negative (capacitive) reactance of any value between

‘ 4
— o0 and 0 while lengths between %and—ébehav‘e inductively.

6 f o

'S 4 / -

5 3 :

Lo J 4
1

NMTRS (l) 3 X T ~

2 4 2 4
3l / Lengih of feeder /
4 /
5 i
6

Capacifalive

F1G. 36, Cuapr. XV.—Reactance of open-circuited line.
(iif) Lengths of line are often used in this manner in matching an aerial array to a transmission
line. It is obviously desirable, as a rule, to use the shortest possible lengths of wire, so that in
practice a length less than 7S generally employed. It must be short-circuited if required to act

inductively, and on open circuit if required to act capacitively.

Properties of quarter-wave line
87. The properties of a line exactly 7];- in length are of particular importance. The input
A

impedance of a loss-free 7

line, terminated by a non-reactive impedance Z., is given by

Z; cosg—l—jZo sin =

Zi=Zo . - JZz
Z‘,cos§+ers£n-Q . o
=2 7Zy bec coS— == 0, sin—-= 1 ‘\/
=257 ause 5 =0 sno=1 :
e
Lh=g (32)

This property of the ~2—line is used for matching purposes. Suppose we have a 100 ohm load, fed
from a 600 ohm line. Then Z: = 100, Z, = 600, and if they are directly connected, reflection will



~ occur at the termination. To avoid this, we may interpose a
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1 ,
4 .
that its surge impedance Zn is equal to 4/Z, Z;, i.e. to 4/100 X 600 = 245 ohms. The 600 ohm

length, of feeder of such a spacing

line will then be correctly terminated, for the input impedance of the—% line, terminated by

2 2
100 ohms, is-ZJ-'— 245

Zr =-1—(")‘0—= 600 ohms.

Example
In the instance cited above, calculate the spacing of the %line in order that Zm = 2450hms,

if the wire is 18 s.w.g.
Diameter of 18 s.w.g. wire is -048 inch, i.e. 7 = <024,

D 245
10gm7 == ﬁGF: 0-888 I

Antilog 0-888 = 7-727

-2 = 7-727
¥

D=17-727 x 024
= (-185 inch.

It is not practicable to space wires as closely as this, except possibly in the case of feeders connected
to receiving aerials. A possible solution is a multiple-wire transformation feeder,

Properties of lines of length
88. We will now consider the input impedance of a length of line equal to some integral

ni
2.

multiple of %, terminated by a non-reactive impedance Z,. Then
2n
A
2n

A

Z. cos Z—Zﬁl—f—jZ0 sin —1

Zi=Z (33)

0
Z, cosggl-l—jzrsin l

Putting I = ng, we see that Z; depends upon whether # is even or odd. If # is odd,
2n Zr

= l =mna=3n 5z, etc., and sin un =0, cos nm = — 1. Hence Z; = Z, X 7 = Z.. The
0
magnitude of the voltage at the output terminals is
Ve=Vi 2n = 2m
JZysin— 1 4 Z; cos —]
A A
— v L
- r
= — Vi
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unity-ratio transformer, the output P.D. being equal in magnitude to the input voltage, with a
phase difference of 180°. Onthe other hand if # is even we have stk nx = 0, cos ux = + 1. Hence

‘ Ze )
Vr_V’jZosz'nnn—}-Z,cosn
Z;
= Vi Zl_
=V
Z.40
A].SO Zi —ZOZ;)———H)
=27

Thus, a length of line equal to an even multiple ‘of—z'-l—is a perfect unity-ratio transformer, the

* Thus we have the important result that a length of line equal to an odd multiple of +is a perfect

input and eutput P.D.’s being in phase.

Voltage distribution along a feeder

89. The voltage distribution along a feeder may be calculated from the formulae given in

previous paragraphs. Taking a length of feeder terminated by a non-reactive impedance Z; = Z,,
we may apply equation (13) of paragraph 74.

. —j-z—ﬂ-z
Vx=vis—Px=vi8 B
Thus if Vi=7 cos (ot + ¢)
Ve=7 cos (wt + 9 —iix).

i.e. the amplitude of the voltage is the same all along the feeder because we have assumed the

: . . . A . .
attenuation to be zero. The phase changes continuously, so that points 3 apart are in opposite

phase. The input current is ;: cos (ot 4 @) but at a distance » from the input end the current is
0

ZKCOS (wt + @ — ?ij . Since ammeters and voltmeters do not measure phase difference, such a
0 .

meter will indicate the same R.M.S. current (or voltage) at all points along the line.

90. We will now consider a general case, in which the feeder is terminated by an impedance
m Z, where m may have any positive finite value, either integral or fractional. Applying equations
{23) to (27) of paragraphs 80 ef seq.

m Zy cos2 (1 — ) + § Z, sin22 (1 — )
A A
V=V 27 27
mZ, cosTl +72Z, sinTl
m cos .z—f—(l — %) -I-jsin—z—zJE (I —=x)
=V; 5 ' (34)
n . . 2n
m cosTl 44 sm—}:—l

=

()
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We wish to find how V, varies with x, and therefore need consider only the numerator of the
bracketed portion. This is complex, and its modulus is +/m%cos%0 4- sin2¢ = N(V,), and

2n

91. The nature of the variation of V', at different points in the line, can therefore be obtained
by plotting N(V,) against x. Its maxima and minima may also be obtained by the differential
calculus. Differentiating N(V. «) with respect to 8, and equating to zero, we find that maxima or
minima are given by (1 — mz) sin 6 cos 8 = 0.

m

g —————

o

>

c-ul
t

>¢
<
>
o
1>
o

B>
r—l

i

(bm < 1
Fie. 37, CHAP XV. —Locatlon of voltage maxima for values of m greater and less than unity.

ded

Unless m = 1, sin 6 cos 6 must therefore equal zero, which is the case if 6 is any multiple of

2—rad1ans. Hence the maxima or minima occur when § = 3" where # is any positive integer or

=gn, or (Il —x) = n 3 Or zero. It follows, therefore, that either
a maximum or a minimum of voltage will occur at the termination, i.e. where [ = x. If m is
greater than unity it will be a maximum, if m is less than unity, a minimum. At a distance of

Efrom the termination, there will be another turning point so that the voltage distribution will

be either as in fig. 37a or fig. 37b, depending on whetherm > 1 or m << 1. It will be seen that m
is the ratio of the maximum to the minimum P.D. or vice versa. The current distribution along the
feeder may be calculated in a similar manner. The resulting curves are very nearly sinusoidal
but not exactly so, except in the case of short-circuited or free lines, because a terminal load will
necessarily call for a feed current. The calculated current distribution for a 600 ohm line, for

. In
ratios 28

I max

from 0-1 to 0-9, are given in ﬁg 38.
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Measurement of surge impedance

92, (i) If the operating frequency is sufficiently low, it is possible to determine the surge
impedance of aline by actual measurement. Let the length of theline be /. The input impedance
is first measured, with the receiving end on open circuit ; let this be Z (f for “* free ). The input
impedance Z, (c for “ closed ) with the receiving end on short-circuit is also found. Then

Zs = Z, coth P!
Z, = Z, tanh Pl
from paragraphs 78 and 79,
It follows that ‘ (
ZiZ, = Z,coth Pl X Z, tanh Pl
= 7,2 |
o Zy = Tz

(ii) The following method has also been proposed.- On erection, the line is extended for rather
more than g past the proposed terminating point, and is then energized at the intended frequency,

or a closely adjacent one, in such a manner that stationary waves are set up along the line. The
wavelength' on the line itself is obtained by observation of the minimum current at adjacent
A
8
of line is then removed from the free end and a calibrated variable condenser joined across the
ends of the line in its place. The capacitance is varied as necessary until the current minima
appear at the same points as before ; when this is achieved, the capacitance is exactly equivalent

current nodes by means of an ammeter and transformer (see paragraphs 4 and 128). A - length

to the length of line which was removed. Referring to paragraph 79, the impedance of a 2

8
length of open loss-free line is
- z, = ~jz, cotzflﬂ
8
. 27 A
= — j£, cot T8
. 7T
= — jZ, cot i
= — jZo.
Since the capacitance C has exactly the same effect on the line as the impedance Z, it follows
&
that
1
- joC Zg.
1 .
JwC = —jZ,
1
or Z0 = oy
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Radiation due to travelling wave

93. Although in most forms of aerial the arrangement is such that stationary waves are
established along the wires, it must not be thought that this is an essential requirement for
radiation to occur. The fact that radiation can and does occur from wires carrying travelling
waves is of importance from two points of view. First, in the case of properly terminated feeder
lines, considerable radiation will occur unless the lines are very close together, i.e. less than about
0-054. Second, it is possible to design aerial arrays for directional transmission and reception,
the action depending entirely upon the radiating properties of a long, properly terminated wire.
The directivity of such an aerial for receiving purposes depends upon the reciprocal properties
mentioned in paragraph 3.

94. If a long straight wire is situated in free space and carries a travelling current wave, the
radiation field set up by the current is easily calculated. Referring to fig. 39 consider a wire of

length I and let the current at an origin O at the mid-point of the length be I, = 1 e’ Wt. At a

Direction oF
propagah’on
} P
I e TP

x - B
4 L // .
_dx 7" 7 v -
T_r 1. 7 . '
T L8 e

l

+§*.
r/

e

Fre. 39, CuAP. XV.—Wire carrying travelling wave,

point P, at a distance 7 (> > /) from the origin, and at an angle 6 to the perpendicular through O,
the field dy, due to the current in a short length dx of conductor closely adjacent to O, may be
found by treating the length dx as a hertzian doublet, giving

2n

fwt+Z—
d‘}’o=670%5036.dx><181( 2 Ar). . o - (85)

’
Consider another element of length dx at a distance x from the origin. Since the wire carries a
travelling wave, the current I, in this element will have the same amplitude as at the origin, but
will be out of phase with it. If x is measured in the direction of propagation along the wire, I,

lags on I by 2-; x radians. Also, the point P is distant (» — x si»n 6) from the element, and the

field due to the latter will be

2n
j[wt+’—'——(r—xs£ne)]
d-y=§§7~;cos€.d,x><lls ¢ 2

@ztcosﬁ.dxxlxs e
r A

. n 2n 2 .
wf -t o~ j ~~ x sin 6
’( 7)) .. .. (36) _
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: 7,
But L =1¢
. fn 2n .2 S
z-= Z alsin6— 1) 5
dy=@f003 6:[045J (2 1')8“\ - Aax, .
‘ r A
2 , :
iT* (sin 0 — 1)
= Acos 0 ¢ Ax e .. .. (37 ‘
' n  2a -
. j mt+———r) ( \
where, for brevity, A= %(I) ;I F ( z 4/,
The total field set up by the whole length of conductor is obtained by integrating between the
limits = +Fand = — , giving
X = +-;-I )
2% o (sin 6 =~ 1) N
y = A cos 8 gl 7 dx
X - -
A cos § [ iR rme -1 —jz—;l(siuﬂ—l)]
= € — &
7 Z—Aﬁ(sz’n 6—1) ‘
v e Y
' A Acos b g s T, ‘
—J W) X 2 sznT(szn 6 —1). .. . .. (38)
Polar diagrams
95. Neglecting the factors —j and A for the present, the field varies with the angle 0 in
accordance with the equation
. cos 6 . al, .
f({6) = g =" I:—A—(sm 6 — 1)],
and this is more compactly expressed in terms of the angle p = —;—— @ which is the angle of the
direction » with reference to the axis of the wire. Then
— cot¥sin | 2% o 23]
f(tp)—cotzsm[l sin® |- N
The total instantaneous field is therefore
n 2:1‘ # \‘
_607; J'(cot+§—7') . A v . I:an . 2'p]% oo
y = ;—}TI & —jcot gsim | — siniq ) SN
2n ' N B
60 J'(w‘ —7’) { v . [2::1 - w]7 Ca
—718 cotism — sin*3 5 .. (39
Tt is interesting to note that this field lags by g radians on that which would be produced by a
stationary wave in the same wire. The portion enclosed in curved brackets, that is, f(y}, is plotted .

(.
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CHAPTER XV.—PARAS. 96-97

in fig. 40, sheets 1 and 2, for various values of / up to 44. It is seen that the length of wire has
an influence upon the magnitude of the maximum radius vector and also upon the angle of the
main lobe with reference to the axis of the wire. These are collected and shown graphically in

fig. 41.

Radialion from slraight wire carrying Iravelling wave

709 (@) Curve showing angle of main lobe }

60- (b) Curve showing length of radius al maximum 6
50 -5
3 w
£ 40- 42
b ©

‘s
20 2 .o

Ef
10 = g
0 ] | i ! 1 ! { £ L O

] 1 ! 1 1 I
1 2 3 4 5 6 7 8-9 10 U 12 13 KI5 16
Length of wire 1n XA unils
2

F1c. 41, CeaP. XV.—Radiation due to travelling wave.

96. It is of interest to refer to the particular case when / = g The R.M.S. field is then
60 v . oW |
Ly = ~ I coti sin (n smzé
As previously shown, a dipole gives a field
cos (% sin (,'o) -

. 60
I (dipole) = T I o5 7

which is equal to G:'—O I when ¢ = 0. Foralength! = % the maximum value of f{y) occurs when

A
3

wave sets up a field 25 per cent. greater than a dipole carrying the same current. In the former
case the current is of course the same at all points in the line, whereas in the dipole the current
referred to is that at the mid-point.

v = 65°. This value of f(y) is nearly 1-25, so that a length of conductor carrying a travelling

Application to radiation from {ransmission line

97. Care must be taken when applying the above results to transmission lines. * Let us suppose
a twin wire transmission line to have such small separation that the two wires may be regarded
as coincident in space. Each wire hasa current I and carries a travelling wave ; the polar diagram
will thus be the algebraic sum of those corresponding to the respective waves. The currents in
the two wires are in opposite directions but the wave direction is the same. Hence the two
diagrams lie upon each other but are of opposite sign, and the feeder is shown to be non-radiative.
I, however, the wires are energized in such a manner that both the wave direction and the
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instantaneous current are reversed in direction, the polar diagram is the sum of two diagrams
appropriate to the length of conductor, one of which is turned upside down and so placed that

the two origins coincide, This is easily seen by tracing the diagram for ! = g (fig. 40) on tracing
paper, turning it about the origin through 90°, and then adding the polar radii of the tracing and
the original diagram. The result is found to be identical in shape with fig. 6, but has a maximum
radius of two units. This is not surprising since fig. 6 is by hypothesis the polar diagram of a
conductor carrying one half of a stationary wave formed by reflection at its open ends, the loop
current being 2. By suitable manipulation, then, the travelling wave diagrams may be used to
determine the polar diagrams of conductors carrying stationary waves.

98. Reverting to the case of a single wire carrying a travelling wave it is obvious that, in
free space, the polar diagram in the plane perpendicular to the axis of the wire is a circle, i.e. the
wire radiates uniformly in all directions. The solid polar diagram is therefore obtained by rotating
the axial diagram about the wire. It follows that if we have two parallel wires carrying travelling
waves, the polar diagram of the two is obtained by multiplying the axial diagram by the
appropriate Grating Factor. In a twin wire transmission line carrying equal and opposite currents,
the grating factor is given by row E of fig. 8. These diagrams are however of little practical use,

T .. A
for the present purpose, because transmission line spacing is usually much less than Z, the smallest

spacing given. For closer spacing, however, the grating factor diagram closely approximates to

two circles in contact at the origin; as the Grating Factoris 2 cos (90 — 1—8;?—d cos 6), the diameter

of this circle is easily seen to be 2 sin ﬁfd . For example, if % = (-05, 18%11 =0° 2 sin 9° =

0-3128 which is the diameter of each circle. It will be seen that for this s‘pacing there is quite
appreciable radiation, but this is greatly reduced as the spacing is decreased.
\

Effect of unbalanced currents in transmission line |
99. When the spacing is very small, i.e. of the order of 5%,

is of more importance than the actual spacing. By methods already used it is easily shown that

if the currents are I, Iy, and Ty = M /ﬁ_{ » the field at a radius  and angle ¢ is approximately

=D Ly TT T 2 o 3.

the effect of unbalanced currents

Thus, if g is very small, and g = 180°, the Grating Factor diagram becomes a circle of diameter
1—-M.

Effect of proximity of ground

100. So far the presence of the ground below the feeder line has been neglected. If perfect
conductivity is assumed, the image of the feeder must be considered to carry a wave travelling
in the same direction as in the feeder, but with the instantaneous current in the opposite direction

“at all points. The field due to the feeder must be therefore multiplied by the Vertical
Dfistilrib?tidon Factor appropriate to a horjzontal dipole at a distance above ground equal to that
of the feeder. :

14
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Properties of twin wire and concentric feeders

101. In order that the transmission line theory may hold it is necessary that the current
at each point in one of a pair of twin wires shall be equal in magnitude to the current at the
corresponding point in the other. Now each wire has a capacitance with respect to earth, and
there is also a capacitance between the two wires. The line currents at corresponding points.
can only be of equal magnitude if all corresponding points have equal and opposite voltages
with respect to earth, and the currents, although equal in magnitude, are then exactly 180° out
of phase. Under these conditions the line is said to be balanced with respéct to earth. In a
properly terminated and balanced line, the power losses are almost entirely due to the chmic
resistance, and the efficiency of transmission fairly high. As an approx1rnat10n the efficiency

may be taken as (100 — —) per cent., [ being the length of the line. A little reflection will show

that although the line itself may be balanced, the circuit as a whole cannot be so, unless the
input and output impedances are also symmetrical with respect to earth. Thus, a horizontal
dipole (fig. 42a) is a suitable load for a twin wire feeder, but an earthed aerial (fig. 42b) is not.
If it is necessary to feed the latter by means of a twin wire feeder, a coupled circuit may be used,
as in fig. 42c. It may be necessary to place an electro-static screen between the two coils as
shown. As an alternative the circuit of fig. 42d is suggested Here the electrical centre of the

@) Dipole forminq perfedlk (b) Earthed. aerial forming ]i—

balanced load enfirely unbalanced load
Balanced and unbalanced loads on {win wire feeder

V%
% | - —
‘ @) Balancing by >
— cenlre -lapped coil .
) Balancing by means of = =
screened RE Transformer
o

- AL e = - - e

I
-

(e) Unbalanced load on concenlric feeder
Fia. 42, Cuap. XV.—Balanced and unbalanced loads.
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coil is earthed, and the feeders are tapped in at electrically equidistant points on each side of
earth. It must be noted that since the aerial is connected to one end of the coil, the capacitance
to earth of its two ends may be very different, and the electrical and geometrical centres are not
usually coincident. Similar considerations apply to the input end of the feeder. Although it is
possible to transmit power along an unbalanced line (for example, as in fig. 42b) it is found that
standing waves are set up, with maxima and minima of different values and at non-corresponding
points in the two wires. The efficiency of transmission is then very low and, in addition, it is
impossible to predict, even approximately, the behaviour of an unbalanced line.

102. In a concentric feeder there is practically no external field, because the currents in the
outer conductor are confined to a very thin layer on the inner surface, and the ocuter portions
act merely as a screen. The outer conductor may, therefore, be earthed without affecting the
electrical characteristics as a transmission line. It follows, therefore, that an earthed aerial may
be fed by meansof a concentric feeder as in fig.42e. On the other hand, if it is required to feed a
balanced load from a concentric feeder, some form of coupling device must be employed. This is
exactly opposite to the conditions governing the use of twin wire feeders.

Methods of balancing the concentric feeder

103. Asit is often necessary to feed a balanced aerial or aerial array by means of a concentric
feeder, two methods of doing so will be described. The first is very simple and depends upon the

fact that a length %of transmission line acts as a perfect 1/1 transformer (with a phase reversal

of 180°). Referring to fig. 43a, suppose T;, T, to be the input terminals and Ty, T, the output

terminals of a section of feeder gin length. If an impedance Z; is connected across Ty, T,, and

a P.D. V;exists at T, T,, the voltage across Z; at T, T,, willbe — V. 1Inaddition, the impedance
of the line, as measured at the terminals T,, T,, with the load Z: so connected, will be Z, ohms.
The load so connected is, however, completely unbalanced. Now suppose that at the end of a

. . A .
transmission line, we measure backwards towards the input end a distance equal to , and bring

out a suitably insulated connection from the inner conductor, as shown in fig. 43b. The terminals
T, and T, are then at equal and opposite potentials with respect to earth, and are suitable for

Fig, 43. Cuar. XV.—Balanced output from concentric feeder—first method.
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feeding a balanced load. Since, however, T,y and T, are usually required to be in proximity it is
convenient to fold the g length of cable as in fig. 43c. This will probably affect the velocity of

the wave along this portion and it may be necessary to determine the exact length by trial and
error.

104. The effective impedance of the load, when connected to the output terminals, is only %

This may be seen from the following considerations. Since the actual impedance between Ty
and T, is Z;, and it is balanced with respect to earth, its centre point is at or near earth potential.
The outer conductor is also at or near earth potential, so that between Ty and earth we have an

impedance of ng ohms and an impedance of %—r ohms between T, and earth. But the latter

impedance may equally be considered to be connected between T, and earth, from the argument
in the preceding paragraph, and therefore the transmission line must be considered as being

terminated at T,, by two imipedances in parallel, each of ZQS ohms, i.e. by —Zi ohms.

105. The second method is as follows. A length / of copper tube A B of the same external
diameter as the outer conductor of the feeder, is placed parallel to the end of the transmission
line, and is electrically connected to the latter at A as in fig. 44a. The inner conductor of the

A - [ > T3 |
S
10 5
—FrEE e ==,
i No earth lo Ta (b) .
t righl of This line T2 \
~ (a) “\“
A
Ty
7+--— ----------------- e T CT T T Ty W
Ty - ©) (d) 2

Fic. 44, Cuap. XV.—Balanced output from concentric feeder—second method.

transmission line is connected to the added tube at B and the balanced output is then taken from
the terminals T, T,, which are connected to the external conductor of the line and the added
conductor respectively. It must be noted that the length / of both these conductors must be
insulated from and preferably symmetrically disposed with respect to earth. The explanation
of the operation of this.device is simple, but rather more difficult to visualize than that previously
described. Suppose that at the input end we apply a voltage Vj, it is possible to find an equivalent

voltage Vi and impedance Z’ which, when connected between the terminals T,’, T,, will cause the
same P.D. at these terminals and will deliver the same current to the load. Now the point T,’
has (practically) zero capacitance to earth because it is entirely shielded by the outer conductor.
It may therefore, as a preliminary, be considered as an entirely isolated point connected to T,
by a generator of voltage Vi’ and an impedance Z' in series, neither of which possess capacitance

*
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with respect to earth {fig. 44b). If now the extra length of conductor is added as in fig. 44c, and
the terminal T} connected to the point B, it is obvious that the output impedance is symmetncal
with respect to earth. The inner conductor may therefore be connected to T; as in the dotted
line. We have, however, added, at the points T, T, an additional parallel 1mpedance due to the
short transmission line formed by the two parallel tubes. Denoting this by Z,, it has already been

shown that Z, = j Z,' tan &l, where Z,' is the surge impedance of the length / of parallel tube.

Ifl =< Zz becomes infinite, while if } = -, Z,is zero. On either side of g Z, is either capdcitive

or. mductlve hence by suitable choice of ! an effective reactance of any desired value may be
placed in parallel with the actual load. The resistance of the load may be matched to the surge
lmpeda.nce of the feeder by choosing suitable locations for the terminals T, T,; in fig. 44d, a

5 deole is fed in this way, the output terminals being located a short distance from the ends of
the parallel tubes.

Comparison of twin-wire and concentric lines
106. In practice, both twin-wires and concentric feeders are used according to local conditions.

It is not possible to give any' definite rules which will govern the adoption of either type. The

following summary of their relative. advantages and disadvantages should be taken into account
in any decision.

(i} Type of load

(@) Twin feeders are inherently balanced and are suitable for any type of load conmstmg of

an arrangement of dipoles. If the load is not symmetrical with respect to earth, some form of
coupling device must be adopted.

(b) Concentric feeders are inherently unbalanced and are suitable for unbalanced loads
such as earthed aerials. If the load is symmetrical with respect to earth some form of coupling
device must be adopted. , :

(ii) Constructional

(@) Twin feeders are cheap to construct and repair. In the field it is even possible to erect
a workable line from field telegraph poles and improvised insulators such as glass bottles, although

of course a high transmission efficiency cannot be expected. On the other hand, since a twin-wire .

line should be several feet above the ground, it is difficult to adopt this type where the transmitter
or receiver is installed underground.

(6) Concentric feeders are expensive to construct, difficult to repair in the event of a
mechanical failure, and are impossible to nnprowse They may, however, be buried and led to
. an underground station.

(iii) Convenience

(@) Twin-wire feeders occupy a  considerable space, part1cu1arly where a large number of-

aerials are energized from transmitters in the same building, because they have an external ﬁeld
and unless different lines are well apart they will affect each other.

(b) Concentric feeders are very compact and may be placed in proximity without mutual
interaction. .

(iv) Breakdown voltagc

(@) The breakdown voltage between twin wires of suitable spacing is very high. Flash over
is not likely to occur with properly matched and balanced loads, at any rate with the power
required in service transmitters.
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(6) With concentric feeders, the spacing between conductors is comparatively small and
they are more likely to flash over. It is therefore essential, from this point of view alone, to
ensure that no standing waves exist in the feeder.

{v) Transmission losses ,

For the powers used in the service, i.e. up to a few kilowatts, there is probably little to choose
between the two types, although accurate figures are not available. For very high power (e.g.
500 kW.) concentric feeders may be better. .

(vi) Radiation and pick-up '
(a) The power radiated by a correctly matched twin-wire feeder is not large. In reception
the pick-up is correspondingly small, but is often difficult to eliminate completely.

(6) With concentric feeders, radiation and pick-up are practically non-existent. For special
purposes where freedom from pick-up is absolutely essential, e.g. a remote D/F system,
concentric feeders must be employed. Again, if it is proposed to use a very high frequency
transmitter in an aeroplane, and a feeder line is necessary, the concentric type is almost
compulsory.

MATCHING DEVICES
Necessity for matching
107. (i} It will be appreciated from the foregoing that in order to convey the greatest possible
amount of power from a transmitter to an aerial system by means of a feeder line, the input
impedance of the feeder must be matched to the output impedance of the transmitter, and the
input impedance of the ‘aerial must be matched to the surge impedance of the feeder. At the

Fic. 45, Cuapr. XV.—Example of mis-matching.

transmitter end, the suitable matching devices are usually incorporated in the design of the
transmitter and need no further comment. The matching of aerial to feeder must often be dealt
with by the personnel responsible for bringing the station into operation, especially on active’
service. Unless this matching is fairly close, the efficiency of the station may be very low. As
an example of what must be avoided if possible, take the arrangement shown in fig. 45a. This is

fairly satisfactory if the feeders are, electrically,i‘lin length, as explained in Chapter VII. If,
however, a feeder of indefinite length is used, a purely physical consideration will show that the
arrangement is far from efficient. If it is considered as aﬂg- aerial connected to one side of a

transmission line, tbe aerial has an input resistance of some 3,000 ohms, while the feeder will have
a surge impedance of the order of 600 chms. On the other hand, we may assume that the feeder
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A
4
feeder has been splayed out in order to show the current distribution on this assumption. It is
now seen that the arrangement is equivalent to a 4 aerial fed at a current loop, and as the aerial
is so folded that a length of-% is non-radiative, its input resistance is of the order of 80 to 100 ohms

is effeéfively terminated at a point—ilfrom the aerial connection. In fig. 45b the final —length of

only. Regarding the arrangement in either of these ways it is seen that the ratio g—' (or-g‘—’) is of
0 r

the order of 5. Although it is rarely possible to obtain a perfect match g—' = 1), the aim should
be to attain this within 25 per cent. ’

(ii) Since a well-designed radio-frequency feeder is practically loss-free, and its surge
impedance is to all intents and purposes purely resistive, stationary waves will only be suppressed
if the termination is also purely resistive. If the input impedance of the aerial has a reactive

component, this must be balanced out by incorporating an equal and opposite reactance in the
termination.

Limitations of R.F. {ransformer as matching device

108. At first sight the problem of achieving an approximate match between the feeder and
the aerial system would appear to be comparatively simple, merely involving the design of a
suitable radio-frequency transformer. In practice, however, it is very difficult to obtain a
practical solution by this method. This would present little difficulty if it were practicable in
a transformer of this kind to achieve a coupling factor approaching unity, but actually it is
rarely possible for it to exceed 0-5. This is due to the necessity for well spacing the coils, in order
to avoid capacitance coupling and to permit the development of high voltage across the input and
output terminals without insulation breakdown. It is highly desirable that, looking into the
input terminals of the matching device, the load shall be non-reactive. If thisis not so the power
factor of the load will be less than unity and, for a given input to the aerial, the line current
must be greater than with a non-reactive load. Since the line cannot have zero resistance, this
must lead to power Ioss in the feeder and to low efficiency. Further, the surge impedance of a
radio-frequency line is practically non-reactive and should, therefore, be terminated by a purely
resistive load. It is possible to bring the power factor to unity by the introduction of a suitable
condenser or condensers in addition to the transformer, but the design of such condensers is again
beset with difficulty. They must be located near the aerial and, therefore, in weatherproof
casing, and yet must be very highly insulated from earth. In some instances, the capacitance
may be only about 100upF and yet the plate area must be sufficient to carry the full feed current
without overheating. In addition, consideration of breakdown voltage may necessitate a large
spacing although the external field must be negligible. The two latter requirements lead to a
very bulky and extremely éxpensive condenser. Unless a transformer is absolutely essential
it 1s customary to perform the matching by means of an electrical network consisting of

arrangements of impedances. These impedances often take the form of suitable lengths of
transmission line.

Principle of matching network

109. In dealing with matching by means of electrical networks, we shall assume that the
aerial itself, at its input terminals, offers resistance only. This resistance will be denoted by R,.
The line will have a surge impedance Z,, which may be taken,to be purely resistive and denoted
by R, The resistances R, and R, being unequal, we require to insert some matching device
between R, and R,. This will be some arrangement of reactances which must be of the lowest
possible resistance. Before dealing with some of the various possible arrangements consider
the matching unit shown in fig. 46, in which the exact arrangement of the apparatus is unknown.

)

<
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T | s

o- -0 o -0
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-t."’1 r_,

o 0 O —0
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’
Fic. 46, CHAP. XV.-—Insertion of matching network.

The requirements are that if the resistance R, is connected across the terminals T,, T,, the
impedance, measured at the terminals T,, T,, is K. On the other hand, if a resistance R, is
connected to Ty, Ty, and the impedance measured at Ty, T, it must be equal to R,. This reciprocal
relation is the essential property of any matching network, and is true if the latter consists of
reactances only. .

L unit .
110. The simplest possible arrangement is the “ L unit ** which consists of two reactances
JA and jB ohms. If R, is greater than R,, say R, = nR,, n > 1, the arrangement is as shown

in fig. 47a, whereas if R, > R,, say R, = nR,, the arrangement will be as shown in fig. 47b.
Taking the former case, the input impedance will be

- jBR,
Zy = JA +-—~——-—RA+jB .. . .. (40a)
) jBR, (R, — jB)
B2R . BR,?
=m_2+‘7(7h2_+‘&3_2+‘4) ° e . .. (4OC)
%
o 0 J <.
< ) g
Zh JB <y
(‘r‘) ‘—}>‘
e, QO
@ >R,
o A o—g
:) ‘ 4:’,
l_‘) \ </‘,
¢; S
& 5

(b £, <K,

F1G. 47, Cuar. XV.—L-type matching units.
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We require Z; to be equal to R, i.e. purely resistive, and the imaginary part must vanish, i.e.

BR,? .
A+R2_lfB2 0 . - - o +o (40d)
' : B*R S
‘ RO:_E:Z——————}—ABz . . . . o e .e (40e)
from the above equations
- Ry (R,® + B* = B*R,
B2 (Ry — R,) = R,R,?
RyR,?
2 0L A
B R - RA.
B = ZF W-:_——T Ry, (401)
because R, = #R;. '
Also '
2
A= — ﬂi_
RA2 + Bﬂ
Inserting the above value of B,
\/n = ”2Roz .
2 '
ZR 2 + 1 an- )
j:\/n-—lRo e . e« ee .. (40g)

Thus the series and shunt reactances must be of opp031te sign ; 1f A is inductive B must be
“capacitive and vice versa. It will also be observed that AB = nRy? = R, R,.

Example—If R, = 3,000 ohms, and R, = 600 ohms, # = 5, Vi =1=2
= + 2R, = -+ 1,200 ohms.
AB = R,R, = 3,000 x 600

B _ 3000 x 600
T 41,200 S
= - 1,500 ohms.
If f = 6 Mc/s, and we decide that 4 is to be inductive, say oL ohms,
ol = + 1,200 |
; 1,200 C . ]
L = g2 6 s henries
' . = 31-8uH
and B will be capacitive, say — wiC ohms.
1 )
— == — 1,500
1
C =32 <6 x 108 x 1,500 224
= 16-67 uuF.

J-.‘

)
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111, In the second case, Ry > R, or R, = #R, (fig. 47b), and the input impedance will be

1 11

ZTBTR A
1 jA
yB+R3+A2

(41a)

(41b)

Again, Zl must be equal to ;.\, , and its i unagmary part must vanish, i.e.

1__R
Ry, R,2H A%
1 .
ad S —igpra =
Hence
_ R+ 41
Ry = R
A2 = R,R, 4+ R,?
Substituting R, = %9.
n—1_,
A = 2 R,?
n—1
A= 3 4 o R,
and
1 A4
7B~ IRE T Ao |
_ R4 43
B=— ——
Inserting the above value of 4,
B=: B
=T Un—1

As before, A and B are of opposite sign and
AB = R,R,

Example—If R, = 120 ohms and R, = 600 ohms, # = 5

B

il

M

A=+ Ry X

l

:}:—1—22— F 300 ohms

= -4 240 ohms,

(41d)

(41e)

(41f)
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LetA—wL B-—-——C,m—ZnXGXIG'
240
—ZnXG”H
= 6-37 uH.
. ‘
— == — 300
10
C = 300 % 27 x s ™F
== 88:5 uuF.
Symmetrical T and IT units

112. Having shown the method of deriving the ma.tchmg conditions in two of the simplest
cases, we may now describe briefly certain other arrangements. Fig.
T, and fig. 48b the symmetrical Il networks. In each case we have three reactances each having
a magnitude of A ohms. The sign of each of the series reactances is the same, but opposite to the

48a shows the symmetrical

g4 + JA
o= — o \ o o
4
o]
o
(@) Symmefric T unit
3
o o o
) Q|
+A t jA
Q 0
C O

(b) Symmelric T unil

Fig. 48, Crar. XV.—Symmetric matching units,

(J
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sign of the corresponding parallel reactance. Such a network is equivalent electrically to a
;llength of transmission line of surge impedance 4 oﬁms. Hence the required reactance is
immediately found by the relation 4 = 4/R, R,.

Unsymmetrical T and TI units

113. These are shown in fig. 49a and fig. 49b respectively. In each case we have three re-
actances4, B,C. Let R, = nR,, where n may be greater or less than unity. Then in the T unit
if4A = aR‘, B = bR,, C = cR,, the numerics g, b and c are interdependent. If a suitable valueis
selected for C and therefore for c.

b= —¢ -+ ; -1 n-
In choosing the value for ¢, therefore, it is essential to make it greater than 4/z. When C = 4/n
the circuit becomes symmetrical. In the unsymmetric IT unit, we have 4 = aR,, B = bR,,
o JA o JB of— o
o]
jC
. o
o «
(@) Unsymmelric T unit
o . ' B j o
+
Vi 7
o
O 0]

(b) Unsymmetric T unil

Fic. 49, Crapr. XV.—Unsymmetric matching units,

E
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'C = cR, as before. 1f the value of B is sultably selected, then, the values of 2 and ¢ are related to b
as follows.

b
 man— b
e b‘

IR Y =)

i.e. if 5 = 4/n the network becomes symmetrical. Hence b must be less than 4/#.

T — 11 network
114. Thisis shown in fig. 50. It possesses the following important property. If the reactances

4, B,C, Dareso ‘chosen that 4 + B+ C=0,and— ——lg— %, so that D is of opposite sign

to 4, and B to C, the network is equivalent to an ideal transformer of turns ratio #. Thus if an

VT 0— ojD o ' j/i o- —oT5

Al

TZC — ' — T4

FiGc. 50, Caap. XV.—T — II network.

aerial of resistance R, is connected to the terminals T, T, the input impedance at T, T, is #n2R,.
To match the aerial to the line therefore, we must make #*R, = R, orn = \/%’ '
A

Annulment of capacitive reactance of load

115. If an aerial is connected to a feeder line in such a manner that a current node exists

at a point in the aerial within a distance of—i from the junction of line and aerial, the latter

offers capac1t1ve reactance as well as resistance and can be represented by an impedance

R, + C ohms, or by an admittance G 4- § B, ohuns, where

G = 0?C2R,
~ TF wiC2R,?
o . oC
Be=rrorcrre
= oC’,
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where C’ is the effective shunt capacitahce, Thus we may annul the reactance of the aerial by

connecting, in series, an h)ductance L= —(;156 , or, in parallel, an inductive susceptance ;—117, where
__1____ = Wl — oC
Py X T 1+ w2C?R,?
;14 0®C2R,?
or L' = Ty
' 1
’ =oic T ORS

116. If the matching is performed by means of an L, I or T network, there is no necessity to
add a physical inductance in this manner, for the actual capacitance C may be considered to form
part of the matching network, the constants of the latter being adjusted accordingly.

Example.—Suppose the aerial to be terminated at a point such that at 6 Mc/sits impedance is
100 — 7 25 ohms."

1
polin 25 _
C= ! farad
27 X 6 X 108 X 25
= 106puF. '
To annul this we may use a series inductance.
25 .
L = 55 & < 7o henries |
= 0-66uH.
The equivalent shunt capacitance is mc;—c—w =C"
c - 106 = 10712
14 (2= X 6 X 108 x 108 x 1072 x 100)2
_ 106
1-16
= 91-5uuF.
and this may be annulled by a shunt inductance
L' — 1-16
(2= X 6 X 108)2 x 106 X 10~*2
= 7uH. ‘
Annulment of inductive reactance of load
117. If the aerial is so connected that a current loop exists in it, within a distance of :

from the feeding point, the aerial offers inductive reactance and its impedance is R, + 7oL ohms.
Its admittance is G — 7By, where

_ R\ N
G = R+ w22 )
oL
B. = R:% 4+ w3L2
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- Thus by connecting a capacitance C in series with the arial, its inductive reactance may be

annulled. The value of C is obvidusly ;ilz—-Alternatively a capacitance C' may be connected in
parallel, its value being given by '
Again, instead of adding a physical component to the aerial itself it is possible to insert the
required reactance in the last member of the matching network. Thus, no matter at what point
an aerial is terminated it is always possible to ensure that its input impedance is purely resistive
and suitable for matching to a non-reactive line.

Quarter-wave matching :

- 118. We may now explain the theory of quarter-wave matching more thoroughly. Suppose
a transmission line to have a surge impedance of Z, ohms and to be ultimately terminated by an
impedance Z; = nZ,. Itis therefore necessary to insert some matching device between the line

‘and the load. A section of line élong, of surge impedance Z,’, terminated by an impedance Z,,
inout i _ (Z)? (Zo)* i 7 =
has an input impedance Z, = — Z, =nZy 2= 7 and if Z)' == 4/n Z,,
. r °
_ () _ iz _
== 0z, =%
3 A .
> ) >

Twin wire Iransmission line. <> 1erminal .
Surge impedance Z, 2, load =

Wiy
Twin wire - @<y o
fransmission line '
surge impedance = Z,
(a)
A{ r ¢
Twin wire Iransmission ¥:a“l:svn’1itgzlon line Terminal
I hpedance ;
ne 2‘1”392(‘,’“ % of surge impedance > load =
0 = Z ‘ w.

, 7 0 0
Twin wire @>1)
Iransmission line = fe——— _A ——
surge impedance =Zp 4 - A -

L) *

Fi1G. 51, Caapr. XV.—Quarter-wave matching.
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Thus, if a-‘! length of line, of surge impedance Z," = rVn- Z,, is inserted between the actual line

-and the load proper, the line is terminated by an impedance equal to its surge impedance, which

is what is requlred
119. If » is less than unity, Z,’ must be less than Z,, and this may be a,chxeved simply by
reducing the spacing of the line over the final - lemgth as shown in fig. 51a. In effect this last

section is a part of the aerial system in that 1t carries & stationary wave, whereas in the line
proper stationary waves should be entirely suppressed. If # is greater than unity, this method of
matching would entail an increase in the spacing, and consequently to increased radiation from
the line in transmission, and greater pick-up in reception. It is then necessary to adopt an
artifice, and arrange the feeder as in fig. 51b. The input impedance of the section B C is

2
"Zg ‘gi’, and we are back to the original problem (n<1). If the surge impedance of the

ne
section A B is Z,’ the input impedance of this section is (29 ”, and we require this to be equal

A

to Z,, i.e.
nZ,)?
Zy

Zy =

=2z,
Ze ' -

. n
If these conditions are aclueved the line will be matched at the point A, and the portion A C

T

becomes in effect a part of the aerial, carrying a % portion of a standing wave.

Example.—A load of (a) 120 obms, (b) 3,000 ohms is to be matched to a 600 ohm line. Find
the required conditions

(a) Here Z; = 120, = nZ,, Zy = 600, n = -I- We therefore require to insert a A section, of

5 4
. ‘ , 1 600
surge impedance Z,’ = J 5—2, 5od = 268 ohms.

(6) Here Z; = 3,000, Z, = 600, n = 5 and the line is arranged as in fig. 51b. The surge
impedance of the part B C is equal to that of the line proper, namely, 600 ohms. The portion A B
will, however, be of such a spacing that its surge impedance is 268 ohms. -

Loop matching

120. If a pair of transmission lines is mcorrectly terminated, the standing waves in the line
may be as shown in fig. 52. Then at a current minimum, e.g. at A, the input impedance, looking
towards Z, is purely resistive, say » ohms, and 7 is less than Z o- At acurrent maximum, e.g. at B,

L]
:. ........... e e me s mmmem——r - '._,+.::_...._.._..__-----_-_--::,--_.-\--
N - S, . ' ~ -,
1 4 hS , i . /,
[} ’ 1 . Vi
rd N\ ’ \ /
H ‘ “ i, | \ ,
! ’ Y 4 : N\ /
! . A * !
i / \ i 1 \
H s \ A : \ . ,
} 4 N ' \ P
4 ’ ] \ ’
t Vs . - i \ ’
N s \\ ” ] 1 N -
I Yo Ve ! 1 ” .
P - —— = Wt e = i ——— - :._-_-_--___---—r --------------
i 1 [}
i l b 1
1 : ]
] [}
[ ! | r
' K 1

Fi1c. 52, Caap. XV.—Impedance at various points in transmission line.
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the input impedance is purely I'LSlSthC say R ohms, where R is greater than Z,, R and 7 being
related by the equation 7R = Z 2. Atany intermediate point, e.g. at X, the input admittance is

complex, sa.y G -+ jB = - + ,‘, and it is possible to match the line up to the point X

{approximately) by connectmg a susceptance of — 4B ohms so that the line becomes non-reactive
at the point X.

121. It has already been shown that the input impedance-of the section of line of length /,
between X and Z,, is

7 -7 Zr cos ﬁl + jZo sin Bl
* 70 Zycos fl + §Z; sin Bl

and its admittance is
1 Y, = Zycos Bl + §Z; sin Bl
Z. Zy(Z: cos Bl + 32, sin ﬂl)
Rationalizing the denominator
Y, = 1 Z.Z, (cos® pl + sin? pl) + j (Z:2 — Z 2) sin Bl cos ﬁl
= Z, Z? cos? Bl + Zy% sin? I

If the matching is to be achieved by the addition of a purely susceptive device, the real part of the

(42)

admittance must be equal to %
0

Le.

11 z.z,

Zy ~ Zy Z2 cos® Pl + Zgt sin® pl
or g

1 : T

Zy  Z2costfl 4 Z2sin? Bl e e e 49)
If Z, = nZ, we have /

1 nZ,

Zy,  n ZyEcos Pl + Zyd sin? fi

1 1 :

SRR HEEER e e 44

To solve this we observe that if fan20 = m, sin20 = m cos?6 and m sin?0 + sm20 = m? cos?0 +
sin28,

So that if n? cos? gl - sin? Bl = n
nsin? fl - sin® fl =mn

s gl M
sosin? Bl = Py
‘ 1 (48)
2 —
cos? Bl = P
tan® Bl =n
It follows that there is a value of gl in every quadrant of -% radians which will meet the required

condition. Tf !’ is the lowest value of / which will do this, the above equation may be written
ma

I = 5 + V', where m is a positive integer.

.

)
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F1c. 53, CHAP. XV.—Physical meaning of I = "%)“+ r.

This result may be translated into a physical picture of the feeder, fig. 53, in which A B, C D,
etc., are possible positions for the matching impedance. :

122. We must now consider the effect of the value of =. If # is less than unity, sin? pl’

(: _n_) must be less than 3. Then, stn fl’ is less than -707 and g’ less than % Since

B = 2}” 2;1 <z means that /' must be less than-%. There will be a current maximum at the

end of the line, and 2 must be within the shaded areas of fig. 54a, i.e. if # is less than unity, the

added susceptance must be applied within a distancerof-si-'- from a point of maximum current.

AL A Al A | |
SN WL PN NS S VL P W
4 4

(b)n>1, currenl minimum al Z.
v Fic. 54, Caar. XV.—Positions of matching susceptance
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If n is greater than unity, sin I’ must be greater than -707 and the value of I’ must be between

-’i-and -g . Hence I’ must be between —;—and -% . The end of the line is a current minimum and 7’

must be within the shaded areas of fig. 54b,i.e.if nis greatef than unity the matching susceptance
must be applied within —g of a current maximum as before. Thus we do not need to know whether
Z. is greater or less than Z,, provided that we measure {’ from a current maximum. It has already

been shown that the ratio %"Eis equal either to » or %—, and as it does not matter whether # is

greater or less than unity, the practical method is to measure %‘—-and call this ratio .
max

Substituting this value in equation ‘(45) will give a value for stn® gl and therefore for /, fixing the
possible positions at which a matching susceptance must be applied. It will be seen that there is
- a choice of positions. Before dealing with these, we may find the value of the matching

susceptance By. This must be equal in magnitude but of opposite sign to the imaginary part
of equation 42,

7 (2 — Z4 sin Bl cos Bl
Zy Z:tcos® pl + Zy3 sin? Bl

]
1 [(%) - 1] sin Bl cos ﬂl.
— 7 .
9 (gz-ro) cos?® Bl 4 sin? Bl

1 (n® — 1) sin fl cos i
Zy n®cos? pl + sin? pl

1 (1 — n? sin pl cos pl 46
7, Wit pl et pl .. - .. .. (46)

since we need only consider the case when #n<<1. Now"sin i cos gl = sm22 i and sin 2 gl may be

either positive or negative. Ifi= ', 2 Bl cannot exceed%:- and the sign of si» 2 I will be positive.

i-e. jB-. ==

By =

Il

This also applies if ] = mn - I’. Under these circumstances By will be a positive, i.e. capacitive

susceptance. If, however, ! = mn — I’, By becomes negative, corresponding to an inductive
susceptance.

123. If the matching reactance is placed on the input side of a current maximum, therefore,
it must be capacitive, while if placed on the opposite side it must be inductive. This is shown

o BB e - e i S i e

.

A
>

F16. 55, Cuar. XV.—Nature of matching susceptance,
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- If we decide to add inductance,
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diagrammatically in fig. 85. The magnitude of the matching susceptance will now be found.
From equation (46),
1 (1 — #n®) sin gl cos pl

Bu ~ Z, n¥cos® Bl + sin? fi
3 T P 2 1
and from equation (45), sin® i = AT cos® 8l b |
| o . g
1 —nt) — X2 :
By = ( )Vn +1 \/n +1 |
1 #
2
Z°("n+1+n+1) .
which simplifies to
1 —=n
By = — .. . .. - - .. .. - 47)
x= =7 {
For example, if # — 0-16, Z, = 600 ohms, By — ———21_ _ 0.0035 siemens (mho). At
e +/0-16 X 600 ;

a frequency of 2 Mcfs (w = 4z X 10%), By = aC or 7.

Suppose we decide to add capacitance,

: C = 0-0035 _ 0-0035
® 4z X 108
= 278 puF.

farads

1
~ 0-000350
_ 1
~ 000035 X 4n x 10°
= 22-8 uH.

124. In practice the matching inductance or capacitance is usually added by means of a
section of line, either on open or short circuit, as explained in paragraphs 86, 115 ef seq. It will be

found that by a judicious choice of the side of the current maximum upon which this line is
connected, it is always possible for these additional “‘ matching lines”, as they are called, to be

less than g in length. Thus, continuing the above example, we will calculate the position of the

added susceptance. From equation (45)

fan l = v/n = 4/0-16 = 0-4
and from tables we find 0-4 = fan—1 21° 48'.
Converting to radians,

L

henries

21-8 X & __ ..
21-48 degrees = —380 rad1an§
, 2=, 21-8a
A =7V =T
I = 21-8= « A
~ 180 2%
= 0-060524.
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Now suppose we decide to connect the matching line on the output side of a current maximum.

Then By must be inductive. From paragraph 86 we find that the susceptance of a short-circuited
line of length /, is B

1
By = — zZ, f"t bl
But Bym — 11
u= Zl) ‘\/’n . ﬁ
and the length I, must be such that / _
1—n
cot fl, = —=
Py 7

Continuing the example, # = 0-16, \/;t. = 0-4,

cot fl; = %——T =2-1

From tables, I, = 25-45°
%2z, 2545 X =

/V ’ Tll— 180
2545 X =n A
h="Tg %z

Note that }’ gives the distance, measured from a current maximum towards the output end, at

which the loop must be placed, while /; gives the length of the short-circuited loop of matching
line which must be added.

125. Let us now find what must be done to achieve capacitive matching. The distance I’
will be the same as before but must be measured from a current maximum towards the transmitter.
The susceptance B, of a short length /, of open-circuited line is, by equation (31), paragraph 86,

1

Equating as before, since By =
quating as before, since By =Z.
1l —m
tan Bl, =
fle =~ -
= 2-1 =i
From tables, pl, = 64-5° : PN
2, _ 645 X =« N
A% 180
ly = 0:1794, . :
To avoid the necessity for these computations, however, fig. 56 has been developed. For any given
value of #, we may read off the necessary length, either of closed (/) or open (I,) matching line,
from the dotted curve and top scale, and the distance /' from the current maximum by means of
the full-line curve and the lower scale. ’
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CHAPTER XV.—PARAS. 126-128

126. The foregoing theory assumes that the feeder line is terminated by a purely resistive
impedance. In practice this may not be the case, but it can be shown that provided the datum
point for measurement is a current maximum, the actual calculations are exactly as for a resistive
termination. This is because if the line is otherwise terminated, all the current maxima and
minima are shifted equally along the line.

Practical application of loop matching ‘

127. The application of the above theory to the matching of an aerial array is as follows.
The array itself will usually consist either of half-wave or quarter-wave (electrical) elements,
although their actual length may not exceed -464 and -234 respectively. The transmission line
may be a pair of conductors, supported upon poles as high as practicable above the ground,
and clear of all irregularities of terrain. It is essential that the insulation at the points of support
shall be maintained at a very high value, for a lumped leakage conductance at any point constitutes
a change in the electrical character of the line and gives rise to reflection, with a consequent
production of quasi-stationary waves, thus leading to both heat losses and undesired radiation
from the feeder. For the same reason, the conductors should be symmetrical with respect to
earth, the transmitter and the aerial array, and sharp bends must be avoided.

128. The first step in matching the array to the line is to energize the line, and observe the
stationary waves in the latter. A suitable arrangement for this purpose is shown in fig. 57. It
consists of a thermo-ammeter reading 0-120 milliamperes, which is mounted in a loop circuit ;
this loop may be suspended from one of the conductors forming the transmission line. The size
of loop shown is suitable for an input into the line of the orderof 1 kilowatt. The line is energized
at a reduced input and the loop is drawn along it, and the current reading observed, field glasses
being of assistance in this process. The current maximum at the point nearest the array is then
selected for particular observation, and the power increased until the ammeter gives nearly a
full scale deflection. The exact position on the line of the current maximum should be marked,
and the actual scale reading, I .,,, noted. The loop is then drawn along the line to the adjacent
minimum, the current, I ,,, being noted and its position marked. Especial care must be taken

e ———

= == D
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Fic. 57, Cuap. XV.—Ammeter and transformer for matching purposes.




CHAPTER XV.— PARAS. 129131

in reading the minimum current since the lower part of the scale is very cramped. At this point
it is advisable to change the ammeter over to the other conductor and verify that the currents
along both lines are equal and that the maxima and minima are in the same positions in each
line. If this is not so, the line and the input termination should be examined with a view to the
elimination of any out-of-balance effects, asit is hopeless to attempt to match an unbalanced line.
The distance between adjacent maximwm and minimum positions should also be checked. This
should be between -234 and -251. When all is satisfactory a final check of I, and I, will

give the ratio II-i'“ = n.

129. Referring to fig. 56, we now locate the position of the matching line by means of the
curve marked “ Position”, e.g. if # = 0-3, reference to the left hand half of the diagram shows
that matching may be achieved by means of an open line, distant -0804 from the current
maximum, on the side nearer to the transmitter, or by a closed loop -0804 from the current
maximum on the side nearer the aerial. Note that the bottom scale is to be read. Reference to
the *‘ Length " curve will now give the length of the matching line ; in the example given, » = 0-3,
and reading from the top scale of the diagram, we find that an open line of - 1444 or a closed loop
of - 1084 will produce the desired effect, the respective positions being of course on different sides
of the current maximum,

130. The choice of open line or closed loop must be governed by local circumstances. For
instance if n = 0-8, we obtain from the closed loop curves a value of 0-1184 for the position and
0-214 for the length, while from the open line curves we obtain 0- 1164 for the position and 0-042
for the length. If the wavelength is great compared with the height of the line above the ground,
it may not be convenient to attach a loop of 0-214 to the line, whereas an open line of 0-041 may
be only a few feet in length and easily suspended from the line. Whether open or closed matching
lines are used, they must be perpen cuf:r to the transmission line, otherwise interaction will
occur between the transmission and matching lines and will give rise to losses.

131. (i) When the matching line has been attached to the transmission line the ammeter
should be drawn along the latter and the maximum and minimum readings again taken ; » should

now approach lunity. If »isless than 0-833 (}; > 1 -2) a slight adjustment of the position of the

matching line, or of its length, may improve matters, but an alteration of only an inchorsoata

time should be made. If the position of the maxima and minima have interchanged, over-correc- -

tion is indicated. Typical readings for an aerial consisting of a single dipole are given below.
Maximum current = 0-114 amperes
Minimum current = 0-031 amperes

n= -272
Position of matching impedance = 0-07841 T e,
Length of loop =014, or
Length of open line = 0-154 -

The ratio of maximum to minimum current after matéhing was 1-14.

(iiy Even where matching at the aerial termination is performed by some other method, loop
matching lends itself to the compensation for the lack of uniform capacitance per unit length of
line. This lack of uniformity always exists to some extent because the line must in practice be
supported by insulators having a permittivity greater than that of air. At frequencies of the
order of 3 Mc/s the effect may be insignificant, but it will probably be appreciable at frequencies
above 10 Mc/s, particularly on long lines. The symptom of such lack of uniformityis that whereas
the ratio of maximum to minimum current over the first few half-wavelengths fromi the aerial
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CHAPTER XV.—PARAS, 132-134

end may be quite near to unity, quasi-stationary waves develop at more remote points, the
mis-matching becoming more serious as the transmitter is approached. The remedy for this state
of affairs is to add additional matching loops at intervals in order to maintain the I"""‘ ratio

as near as possible to unity along the whole length of the feeder.

Suppression unit , : S

132. It has been stated that a length 2 of loss-free conductor acts as a perfect 1:1 ratio
transformer while a loss-free length of—% acts as a perfect transformer of ratio — 1: 1. Although
a conductor cannot be entirely loss-free, if it is arranged in such a manner as to be practically
non-radiating, its loss will be almost entirely due to joulean heat and may be very small. It is
possible to approach the desired non-radiating property by folding the conductor symmetrically
as shownin fig. 58a and fig. 58b, in which it will be observed that the total length of wire is double
the actual distance between the input and output terminals. A feeder arranged in this manner is
sometimes called a ‘ suppression unit ”. In fig. 58a, the feeder isrequired toactasa 1:1 trans-

former and the total length of wire is one A. ‘It is bent rectangularly at intervals of é—"— forming a

kind of chequer pattern in space. Similarly in fig. 58b, we have a length % of conductor bent into

24 rectangular loops at intervalsof * , the whole actingasa — 1:1 transformer. It is recommended

that where this expedient is adopted the number of bent portions shall never be less than 24. The
velocity of the wave along the wire is probably at least 10 per cent. less than in free space and
the theoretical length of conductor should be reduced by this factor.

133. As an example of the use of such a feeder, let us consider the problem of feeding two
‘parallél vertical dipoles, with syn-phased current from a twin-wire transmission line. If instead
of being parallel, they are arranged co-linearly as in fig. 58¢, they could be fed directly from theline
through a suitable matching device. If however the lower aerial of the two is turned upwards so-
that the dipoles are parallel instead of co-linear (fig. 58d), it is seen that the currents in the two
aerials are in opposite directions, and the desired polar diagram will not be obtained. Some form of
— 1:1 transformer must therefore be inserted in one of the aerials, and the only question is the

form it shall take. If the parallel dipoles are—;- apart the most obvious method is to use a single

y !
2
properties and consequently the power to be supplied from one side of the line will be considerably
greater than from the other, i.e. the aerial system is unbalanced. Nor is this all; unbalanced
currents must flow in the transmission line and consequently this will also radiate. The final
result may well be that the polar characteristics are very different from those aimed at.

length of horizontal conductor as in fig. 58e. This conductor will however possess radiating

134. An alternative method of feeding is shown in fig. 58f, in which the output terminals

T3 T, of the matching network are located as follows. From the aerial A, draw an arc of radius —é,

“

A .
and from B an arc of radius g Then Tj. T, are to be located at the intersection of these arcs.

From the output terminal T, to the aerial A we may now connect a one-4 section of non-radiative
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feeder as described above, which will behave as a 1 : 1 transformer, a.nd from the output terminél
T, to the _a.erial Ba ?;'- section giving a transformation ratio of — 1: I. The arrangement is then
as shown in fig. §8g. The two aerials will then be energized in syn-phase and will give the required
“polar diagram, i.e. A5of fig. 8. The same method may be adopted for any aerial spacing up toji-3 2,

s .

radiating feeder is often used to feed the vertical radiators in the Franklin uniform array, and also
in conjunction with multiple unit series phase arrays.

- PRACTICAL TYPES OF AERIAL ARRAY

135. The simple broadside array consists of a number of aerials spaced at uniform distances
along a horizontal line and fed in such a manner that all the currents are syn-phased. The width
of the array, in wavelengths, is called its aperture. Fig. 59 shows the effect in the horizontal plane

of an increase in the aperture of an array consisting of vertical dipoles spaced -g—- apart. Each

dipole is assumed to carry the same current, I, and the effect of mutual impedance between the
various members is neglected. It will be observed that with # dipoles the field strength in the
direction perpendicular to the line of the array is # times that given by a single dipole. To obtain
this increase with a single dipole the current must increase to #J, and the power input would be
proportional to (#I)2. With the array of # elements, however, the power input to each is
proportional to 12, and the total power input to 2. The improvement of the array over a single
dipole may be obtained from the ratio of powers and is obviously equal to #. In other words, to

give a certain field strength in the required direction, an array of » elements requires only;lz
of the power which would be required by a single dipole to give the same field.

186. It must be emphasized that the improvement shown in fig. 59 can only be obtained by
an appropriate increase in power supply. In order to bring out this point, fig. 60 has been
- prepared. This shows the horizontal polar diagrams of various arrays.consisting of from one to
eight elements as in the previous instance. but with the same power input in each array. The
improvement.is now proportional to 4/% instead of to #. The effect of mutual impedance between
the members may cause the improvement to be slightly less than 4/%, but the shape of the polar
diagram is very little affected. The shape of the vertical polar diagram of such an array is given
by the Current Distribution Factor for a single dipole, multiplied by the reflection diagram
appropriate to the earth in the vicinity. The scale is dictated by the same considerations as
that of the horizontal polar diagram. :

~ 137. The effect of a suitable reflector curtain is shown in the next diagram, fig. 61, in which
each energized element is supposed to carry the same current. The effect of the reflector is to
double the field strength in one of the two directions perpendicular to the array and to suppress
the radiation in the other. This diagram is the theoretical one obtained with a reflector dipole

placed —g—behind each energized dipole. Actually, it may be found desirable in practice either to

‘detune the reflector wires by making them a little longer or shorter than the energized members,

~ or to use a separation other than% between energized and reflector wires. Both methods may,
of course, be used in conjunction.

| 138. In order to.obtain a low angle for the main beam, the lower ends of the vertical members
should be as high above the ground as possible, and in any case not less than -g Allowing for the

»
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. CHAPTER XV.—PARA. 139
sag in the triatic stay from which the wires are suspended, this means that the masts supporting

an array of this type must be about gl in h'eight. This is one of the practical disadvantages of

this form of array for service purposes. Another disadvantage is the difficulty of feeding. If a
feeder is attached to the lower end of each element of the energized curtain, i.e. at a voltage loop,
the input impedance is of the order of 3,000 chms, and an impedance matching device must be
inserted between the feeder and the aerial element. The aerial itself is an unbalanced load, so
that the alternatives presented are (i) to use a concentric feeder and some form of matching
network (ii) to use parallel-wire transmission lines in conjunction with a transformer. Asall the
feeding points must be energized in phase, matching must be performed at a large number of
points, or else a comparatively high degree of mis-matching accepted.

Tiered arrays

139. If masts of sufficient height are available, it is advantageous to arrange tiers of vertical
radiators, one above the other. This results in an increase in field strength in the required direction
and also gives increased directivity in the vertical plane. The problem of feeding the array also
becomes somewhat simpler from the purely theoretical point of view, provided that the elements

to be fed are-—% apart. It has previously been shown that a % length of loss-free transmission

line acts as a perfect —1: 1 transformer. It is therefore possible to arrange the feeder in the
manner shown in fig. 62, alternate elements being voltage fed from opposite sides of the feeder
line. The voltage distribution along the feeder is then as shown by the dotted lines, and the
current distribution in the elements as shown by arrows. This method of feeding is an obvious
development of fig. 58¢c, but in the present instance, instead of a single unbalanced conductor,

Fic. 62, Caapr. XV.—Array of vertical dipoles.
h



CHAPTER XV.—PARAS. 140-141
there is a twin resonant feeder line between each pair- of feeding points. This feeder does not
radiate appreciably and the load is very well balanced. If the bottom of the array is to be A

above ground, the masts supporting it must have a height of about 24, and the feeding point will
be one A above ground. The mechanical difficulty of fitting and adjusting a matching device at
this height above ground is such that the arrangement is rarely adopted. '

Sterba array , ‘

140. The Sterba array isshown in fig. 63. Each unit consists of a single continuous conductor
which is supplied with current at the appropriate frequency. The half-wavelength sections are
arranged vertically and horizontally in an. alternative manner, so that all the vertical wires
‘carry current in phase, and set up radiation, while the horizontal sections are so arranged that

! e %—-r--o-——f\é“’i A .
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Fic. 63, CHar. XV.;Sterba array.

they are non-radiative. The feeding points are at the current loop of one half-wave section, the

unit is thus offering minimum impedance, i.e. it functions as an acceptor circuit. A number of ’

units are erected side by side and fed with syn-phased currents by trapsmission lines vig suitable
matching devices. A similar array about a quarter of a wavelength behind the energized array
will act as a reflector. The object of this arrangement is to allow a direct current to be fed through
the radiator wires for the purpose of thawing any accumulation of snow or ice, suitable filtering
- devices being incorporated in the matching unit. Where * de-icing ’ is not necessary, the Sterba
array offers no particular advantage over the simple broadside array.

End-fire array

141. An end-fire array differs from a broadside array in that there is a progressive phase
difference between the currents in adjacent aerials. If g is the difference in phase and d.the

spacing, -; = -25—7! The effect of this phase progression is tq cause the radiation in the horizontal
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plane to be concentrated in a main lobe together with small subsidiary lobes, the main lobe being
directed along the line upon which the aerials are situated. Whereas the broadside array is
bi-directional, the end-fire array is unidirectional, so far as the main lobe is concerned, the
radiation heing directed towards the end at which the phase is lagging. The radiation in the
vertical plane containing the array is more or less concentrated in a direction near the horizontal -
plane. The series-phase array described later is a particular example of this type.

Arrays of horizontal dipoles :

142. Although the horizontal dipole gives no radiation along the earth’s surface, it is found
to be quite effective for long distance short-wave communication, and arrays consisting of
horizontal doublets are now in extended use. They offer the theoretical advantage—which is
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Fic. 64, Cuar, XV.—Array of horizontal dipoles,

borne out in pi’;actice—‘—-qthat the array is intrinsically much better balanced with respect to earth
than an array of vertical elements. For the shorter wave-lengths, quite a serviceable array may

be erected on 70 feet masts although, of course, higher ones are desirable for reasons already

given. A very simple form’ consists of four %dipoles arranged as in fig. 64. The lower pair are

connected directly to the terminals of the matching device, and the upper pair, which are g

B
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A
2
transformer. It follows, therefore, that the feeding points must be taken from the sides of the
transmission line opposite to those from which the lower side is fed. As a rough approximation,
the radiation resistance of the arrangement may be taken as 4 times that of a single member less
about 17 per cent. due to the effect of mutual impedance between the various members. If the
lower pair are one-half wavelength above ground, the radiation resistance of each member will
be about 73 ohms, and the total radiation resistance of the order of 240 ohms. A reflector curtain
may be used in conjunction with the energized curtain in order to concentrate the major portion
of the radiation in the required direction. It is convenient to use a reflector aerial parallel to

above the lower, are fed by means of a ; length of twin transmission line operating as a —1:1

each energized member, the spacing being -ii and the length of the reflector about 85 per cent.

greater than the energized member. The latter are usually 5 per cent. less than g so that the

reflector wire has a length of about -524. If only 70 foot masts are available, allowing 10 feet
for the sag in the triatic which supports the whole aerial, it is seen tHat the longest wavelength
for which this aerial can be built is about 18 metres.

143.-The effect of a reduction in the height of the lower members is of importance, and is
very easily found to a good approximation by the use of fig. 8, and the methods explained in
paragraphs 18 and 19. There is no need for extreme accuracy where only the angle and
approximate magnitude of the main lobe is required. To illustrate the point, the vertical polar

diagram of the four-element array has been derived, first, in fig. 65a, for the lower members 3

above earth and second, in fig. 65b, for the lower member at a height of 2 In the first diagram

Fic. 65, Caapr. XV.—Vertical polar diagrams, arrays of horizontal dipoles.

)
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the fine dotted-line curve corresponds to fig. 8 A 5 (parallel dipoles-g apart with syn-phased

current) and the chain-dotted curve to fig. 8 E 13 (parallel aerials gz apart, with currents in

ant1-pha.se) or to s = 0-751in fig. 21. The product has been obtained for only four or five points
and the full-line curve drawn. In the second diagram the fine dotted line is diagram A 5 of fig. 8
as before, and the chain-dotted line is obtained from fig. 8 E 9 (parallel aerials 1apart, in anti-phase)
orh = 0-51in fig. 21. The product is shownin fullline. Itis seen that in the first case the angle
of the main lobe is about 18° to the horizontal, but that the field at an angle of only 4° is quite
appreciable. - With the lower aerial, however, the angle of the main lobe is about 22° and the
field strength at angles less than 10° is very low. At a risk of over-emphasis, it is again pointed
out that a few minutes study of fig. 8 and paragraphs 18 and 19, will give an approximate numerical
solution of almost any example of this kind and is of greater value than many pages of purely
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Fia. 66 Cuar. XV.—Radiation in space; array of honzontal dlpoles

qualitative statements. In fig. 66 the distribution of the field is shown upon a sinusoidal graticule
for the case where the lower members are —g above ground, corresponding with the vertical polar

diagram of fig. 65a. This diagram was obtained from’ the latter figure by rotating it about a
vertical axis through the origin, and multiplying each radius vector by the-appropriate value of
3 rd

cos(%sjn 9)

the Current Distribution Factor for a —;1 dipole, i.e. , where 6 is the angle in azimuth

cos 6

through which the vertical diagram has been rotated. The datum, 6 = 0, is the direction .in
azimuth in which the maximum radiation is produced.

The Frapklin uniform array ‘

144. This array isillustrated in fig.67a inwhich the radiating membersand reflecting members
are shown separately. FEach radiator is about 34 in height and is doubled back upon itself in a
sort of “ Greek key ”’ pattern, in order to obtain an approach to uniform current over the greater

=™
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part of the actual height. This point is further illustrated in fig. 67¢c, which shows the approximate
current distribution, and it will be seen that the radiation from the ends of each element of wire
cancels out. As the current at these ends is comparatively small, little energy is wasted in this
way, but the whole available height is made to carry a nearly uniform current approaching the
loop current in magnitude. Where the mast height is sufficient, the actual radiating members
are located in the higher portion of each bay, and a folded, nearly non-radiative feeder is used to
convey the current from ground level to the aerial feeding points. The reflector units are usually

z - . B . .
placed aboutZ-or :Zl behind the radiators as shown in fig. 67b, the length of each reflector wire .
being adjusted to give the best forward radiation. The aperture of the array depends upon the ANPA
il
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Fia. 67, Cuap, XV, —Franklin uniform array.

nature of the service ; two, four, six and eight wavelength arrays have been used in different
circumstances. Although this form of aerial gives very good results, it is practically impossible to
extemporize, and owing to its high cost; is now being superseded in commercial practice by the
“series phase array, at all events for shorter waves, i.e. 30 metres and below. ' .

The series phase array - |
145. This form of end-fire array consists of a long wire, which is so bent that a series of vertical
loops are formed. Each of these loops consists of aisection of wire doubled back upon itself,

2
—i'. These loop3 are joined in series by horizontal portions and are

separated in space by a distance of 24, the wire itself being thus continuous throughout its length.

so that the height of each is C

The action will be explained with reference to fig. 68. The arrangement of the wire is shown in

fig. 68a, T,, T,, being the input terminals, to which the feeder line is connected. It will be observed
- that T, is actually the earth itself, and the array is of the unbalanced type. In contrast to most
of the arrangements previously described, the array 'may be terminated at its distant end T, by
a non-inductive resistance equal to the effective surge impedance of the aerial, considered merely-
as a current-carrying conductor ; this is about 300 ohms. When so terminated, no standing

: A
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Fi1G. 68, CaHAP. XV.—Series phas¢ array.

waves are set up in any portion of the array-—a point of primary importance. Ifa P.D. is applied
to the terminals T,, T,, a travelling wave will be set up in the wire, moving from left to right.

Considering only the vertical portions, it will be seen.that at any given instant the current at all
points in the section BC will be equal and opposite to that in the adjacent section CD. As these
are so close together they may be considered as a single radiator carrying equal anti-phased

currents, and we have seen that the effect of such currents in a % length of wire is to set up one

™
quarter of a standing wave in the wire. Thus, in effect, the loop BCD acts as ai— aerial. Similar

considerations apply to the loops EFG, HIJ, etc. It must be understood, howéver, that in these
successive loops the effective standing waves of current are not in phase with each other. The
phase difference between any two successive loops will depend upon the length of horizontal

connectmg wire, and when this-is—, the standing wave in EFG will reach its maximum a quarter

4
ofa cycle earher than that in BCD and so on. The current dlstnbutlon at four successive intervals
4 f seconds) is shown in fig.68b. It is also seen that, at any given instant, the current in adjacent

horizontal sections is in anti-phase, and consequently the total radiation from these portions is .

negligible. The radiation resistance R, of a vertical % radiator is equal to about 36 ohms, and
if I is the R.M.S. current at the base, the power radiated is P =1 2R.. Now each vertical member

A3
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of 2 S.P. unit acts as a %— radiator, but its base current is effectively equal to twice the feed

current. For a given feed current therefore, the power radiated is four times that which would

be radiated by a—}laerial with the same feed current, and the radiation resistance of each vertical

4 ,
member of a series phase array is therefore of the order of 144 ohms.

146. The horizontal polar diagram of a single-unit series phase array depends upon the number
of vertical loops. If only two loops are used, the diagram approximates to fig. 8 A 3,1i.e. a cardioid
maximum radiation occurring toward the input end. If the length of the unit is extended with a
corresponding increase in the number of verticals, the main lobe of the diagram becomes sharper,
subsidiary lobes of small magnitude being developed. In practice the system is’ sometimes
extended to a length of 4 to 64, i.e. from 17 to 25 verticals. When so extended, the attenuation
of the current cannot be entirely neglected. It must be observed that since the radiating elements
are in series, and each has a comparatively high radiation resistance, the attenuation is very much
greater than in a non-radiating line of the same length. In the latter also, the whole of the power
transmitted down the line is absorbed at the terminating resistance. A little reflection will show
that if the attenuation is very great, the loops nearest the transmitter will radiate well, but the
remote ones poorly, and the polar diagram will not be sharply directive, while if the attenuation
is low, the majority of the power supplied to the array will be dissipated in the termination, and
the efficiency will be very low. Thus, for transmission, there is an optimum length, which is of
the order of 44 to 54. Under these conditions, the ratio of currents in the first and last members
may be of the order of 6 to 1, or a power ratio of 36 to 1. The terminating resistance is then
practically unnecessary. It follows that the theory is more complex than was suggested above,
in that, instead of a travelling wave, quasi-stationary waves will be set up in the system.

147. In the foregoing explanation, the lengths of the various vertical and horizontal elements

ZA . Thisis, of course, the electrical and not the actuallength. Owingto the method

of construction, in particular the large number of sharp bends, and to the effect of mutual
impedance between the radiators, it is found that the verticals should be about -2251 to -231
. in height and the same distance apart. This is of importance in obtaining the desired ‘‘ end-fire "
polar diagram. Another point of practical significance is the attenuation of the current in
successive radiators. If the feed current is' I amperes, the ratio between the currents in successive
radiators being # (<1), and the total resistance of a unit consisting of one horizontal and one
vertical element is R ohms, the total power dissipated will be

RA{I® + (x])® + (a?1)* + (#*1)* . . . .}
= RI?{l 4+ %% - 2% + 28 : . .. tonterms,}
the final term of the series representing the power dissipated in the terminating resistance. Hence

the power input to the whole array is

1 — g,
—1—':_'—"""‘—2-[ R watts,

were said to be

— g : ,
—1——-3—-:1? ohms. - In practice 4% is very much smaller than unity
— xt

and the input resistance i

and the ihput resistance approacl‘es the value 1= ohms. For instance, if x = -8 the input
resistance will be '1_——180—67 =278 R. As Rmay be about 160 ohms, the input resistance is about

450 ohms for this particular attenuation. This calculation again ignores the effect of mutual
impedance, which causes the radiation resistance of each successive member to differ from that
of the preceding one.

0.

Iy

)



CHAPTER XV.—PARAS. 148-150

‘ . A
148. The array was originally suspended with its horizontal members at a height of i

above ground, but better results appear to be obtainable if this height is increased. The nature
of the soil under the array is also of importance. Best results appear to be obtained when the
ground is either very highly conductive or almost perfectly insulating but of low permittivity,
and the moist earth of the average site in Britain appears bad. There are, however, little data
yet available in these respects. The frequency toleration of the series phase array is only of the
order of 2 per cent. This constitutes a considerable disadvantage for service purposes. The
directivity of a series phase array consisting of 8 loops is shown in fig. 69a,and the vertical diagram
in fig. 69b. The horizontal directivity can be improved by using two parallel arrays fed in

‘F16. 69, Crar. XV.—Polar diagrams of 2 series phase array.

Ay

syn-phase. These may be gl apart, for convenience in feeding by means of a non-radiative feeder

as described in paragraph 134. Two parallel arrays may then be connected, vig a suitable matching
device, to a twin wire feeder, and will constitute a balanced load.

Arrays used for reception ’

149. In general, any of the forms of array which have been previously described may be used
for reception, the directional properties being practically the same for either purpose. Since,
however, arrays are generally used where the traffic is continuous, it is rarely required to use a
given array for alternate periods of transmission and reception ; in any case, the transmitter is
usually remotely controlled and it is most convenient to erect an array for the sole purpose of

‘reception. It is then obviously uneconomic to adopt arrangements which may be imposed by

transmitting considerations, e.g. breakdown voltage does not enter into the design of a receiving
array. On the other hand, correct termination is just as important if not more so than in the
transmission case, and due attention must be paid to the nature of the aerial, balanced or un-
balanced as the case may be, in designing the matching units. A single dipole opened at its
centre for the connection of the feeders has a total resistance of the order of 100 ohms, and may be
directly connected to a feeder of Z, = 100 ohms. Where the length of line is not too long a length
of ordinary twisted flex may be used as a feeder, for its surge impedance is of this order. This
arrangement is also suitable for transmission when the input does not exceed a few watts. As the
insulating material between the conductors is partly air and partly of cotton, rubber, etc., the
losses are rather greater than in an open line.

150. The series phase array is finding increasing favour for receiving purposes, Since the field
is not uniform in phase over the whole of the array, it is rarely advantageous to extend the length
beyond about 234, i.e. eleven vertical loops. In some cases the feeder end is elevated above the
remote end in order to obtain additional vertical directivity. If two parallel arrays are used they
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may be spaced %A apart and connected via a suitable matching device to each side of a twin wire
feeder line through 4 and%

currents are then in the correct phase for connection to the input terminals of a balanced
receiver, the line being also balanced and therefore dpractically non-radiative. The signal-noise
ratio of this arrangement is found to be of a high order compared with that of a single dipole.

suppressidn units respectively. At the receiving end the received

Rhombic array .
~ 151. This type of array has several useful forms, e.g. a single tilted wire, an inverted V, or a
horizontal diamond shape. These are all classed together because the same principles are involved.
The precise form adopted in any given case depends upon the polarization of the incoming wave,
the direction, the wave tilt, the frequency, the available space and the material available for
‘construction. The original form was the tilted wire aerial shown in fig. 70. First, suppose the wire

Incoming wave
direction

'E!;_..__-..___.._....._‘_._."___.._.____

-~
To receiver

F1c. 70, Ceap. XV.—Tilted wire aerial.

to be several quarter-waves in length, erected vertically and connected to earth by a non-reflective
terminating impedance. If the electric field vector I' of an incoming wave is vertical, it will on
arrival at the aerial induce in any element of length ! an E.M.F. /I, and a voltage wave due to
~ this will travel both upward and downward. The former wave will be reflected at the free end and
will travel downward to the termination, so that in effect, there is chiefly a voltage wave down-
ward. Since every elementary wave of strength [ originates at a different point in the wire, they
do not arrive at the termination in phase. The current in the terminating resistance is therefore
due to the resultant of a number of elementary voltage vectors, and the magnitude of this re-
A
2
if it is a whole wavelength the resultant is zero. If however this one-wavelength wire is tilted
forward in the direction of the transmitter, any given phase of the electric field vector reaches the
upper portion of the wire before the lower, and consequently the induced E.M.F.’s in the upper
portion are advanced in phase with respect to the lower ; this phase advancement is obviously

sultant depends upon the length of the wire. If the length is ;, the resultant is a maximum, and
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CHAPTER XV.—PARAS. 152-153

progressive as we consider elements further from the termination, If then the tilt is such that the
upper end is gnearer to the transmitter than the lower end, the current vectors due to the various
voltage elements will all be in phase.

152. The angle which the tilted wire makes with the horizontal is thus very important ;
maximum energy is delivered to the receiver when the base A B of the triangle formed by the wire_

and the ground is } less than the length of wire, Foralmgthl, AB =1 — , eg if{= 4 the
tilt angle ¢, measured between the wire and the vertical, is sin—1 0-50r30°, Ifl— 24, AB = gl
1-52 ' ' '

22 ,
very slowly, if the length is greater than about 44, and consequently the same aerial is eHfective
over a fairly wide frequency range.

@ = sin—1

= 49° and so on. Asa result of this relation, the optimum tilt angle varies only -

153. In practice, the above form is rarely used because it is possible to obtain better results
without an appreciable increase in material. The simplest development is to place two similar
tilted wires back to back forming an inverted V. If one end of thisis open and the other connected
to the receiver (the latter being properly matched to the aerial) the aerial has a broadly bi-
directional response, but if the free end is earthed through a terminating resistance equal to the
surge impedance of the aerial, its response becomes practically unidirectional, receiving mainly
from the direction in which the termination is situated (fig. 71a). The forms shown in figs. 70 and

___Incoming wave
" direclion

Horizonfal component
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g View ]
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Fic, 71, Cuar, XV.—Inverted V and horizontal diamond arrays.
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CHAPTER XV.—PARAS. 154-155 S

~ 7la are intended for the reception of vertically polarized waves, but experimental results showed
that the horizontally polarized component of down-coming waves would provide ample field
strength for long distance reception, while an aerial suitable for such reception would have
comparatively little pick-up of vertically polarized waves and might therefore be expected to give
a high signal-noise ratio. As a result the horizontal diamond array was evolved. This is shown in
‘plan and elevation in fig. 71b. In its simplest form it consists of two horizontally opposed V
sections, similar to fig. 71a, one end of the array being connected to the .receiver, and the other
terminated by a suitable resistance. - As in the tilted wire type, the length of each element decides

the maximum gain of the array. The latter is dbtained b}‘r. making } exceed bv g the length of

its prbjection upon the base A B.

154. In the design of a horizontal diamond array the three variables to be adjusfed are l, ¢ .

?l.nd Ii' (fig. 71b). The angles g and J are regarded as constant. Then the lowest permissible
eight is R ‘ 5

P : o B
- h—4sz'n6' ' -
while ¢ is given by
.  Sinp=2C¢os 8
and for maximum gain
A
b= aente

155. In practice it is found that the greater / is, the wider is the efficient reception band of a
particular aerial. The optimum value of the terminating resistance, for a high front to back
reception ratio, is found by trial. The actual conductors forming each inverted V are frequently
constructed of twin parallel wires, connected in parallel and spaced a few inches apart. By varying
the spacing it is then possible to facilitate the matching between the aerial and the transmission
line feeding the receiver. It is also possible by this means to make the surge impedance of the
aerial uniform at all points throughout its length, and so to decrease the power loss in the aerial.
-To do this the twin wires are spaced apart at the apex of each V and close up towards the opposite
ends of the wires. The diaménd array may be used for transmission, but little data are available
as to its performance. The directivity should, on theoretical grounds, be similar to that of the
.same array used as a receiver.
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