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CHAPTER V.—SINGLE-PHASE ALTERNATING CURRENTS

INSTANTANEOUS, PEAK AND R.M.S. VALUES

Heating effect of sinusoidal current

1. When an alternating E.M.F. is applied to an electric circuit the immediate result is the
production of an alternating current of the same frequency, and in this chapter it is proposed
to consider the behaviour of such circuits. The simplest wave-form of an alternatipg quantity
is the sine wave and unless otherwise stated it is always assumed that the current has this wave-
form. The value of the current at any instant is called its instantaneous value, while the
maximum value attained at any instant during each half-cycle is termed the peak value. The
instantaneous value, denoted by ¢, is related to the peak value ¢ by the equation

i = sin ot
where o = 2 =« f.

The instantaneous value of an alternating current or E.M.F. is only measurable by
expensive and complicated apparatus, and even if known a single instantaneous value gives no
indication of the total effect of the current over a considerable period ; the peak value is merely
one particular instantaneous value and can only be measured in the same way. Any kind of
measurinig instrument which indicates the average value of the current, e.g. the moving coil
ammeter, must of necessity give a zero reading if connected in an A.C. circuit, for it is obvious
from inspection of the wave-form that the average value of the current over any number of
complete cyclesis zero. The heating effect of an electric current, however, is entirely independent
of the direction in which the current is flowing, and the effective value of an alternating current
is said to be I amperes if it has the same heating effect as an unvarying current of I amperes.
In other words, an alternating current has the same effective value as a given direct current
if both produce equal deflection of the pointer in a hot-wire ammeter, so that the latter instrument
may be calibrated by comparison with a sub-standard moving coil ammeter in a D.C. circuit,
and afterwards used in an A.C. circuit for current measurement. In order to find the value of
direct current which is equivalent to a given alternating current i = o9 sin wf therefore, it is
necessary to find the heating effect of the latter. Now at any instant ¢, counted from the
beginning of a cycle, the power expended, p, (i.e. the rate at which energy is being expended at
that particular time) is #2R joules per second, if R is the total resistance of the circuit and 7 is
the instantaneous value of the current. Hence

p =1R = RI? sin? wi
The current ¢ = & sin «f, and the instantaneous values of 42, are plotted (side by side) over a
complete period in fig. 1, in which the peak value of the current, .9, has been arbitrarily assigned
the value 4 amperes. It will be observed that although ¢ passes through both positive and nega-
tive values, the curve showing the square of the current has positive values only, which is a
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Fic. 1, Cuar. V.—Heating effect of an alternating current,
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graphical illustration of the fact that the square of a real quantity is always positive. This
curve contains two complete cycles in the time taken for one cycle of #, and its average height is
8 units. This may be verified by tracing the curve on to thin paper, and cutting off the shaded
portions above the dotted line. The peaks thus removed will then be found to fit into the
hollows left below the line, showing that the area of the whole ¢2 curve is 8 X T units, thatis

12—(3‘ T or— “9 T. The average height of the curve is the area divided by the length of the base,

the latter bemg T units. Hence the average height is% units. Another way of arriving at the

same conclusion is as follows. The “ current-squared " curve is a cosine curve of twice the
frequency of the current curve, but its axis is displaced upwards by 8 units, so that it never
becomes negative in sign. The curve can therefore be represented by the equation

g2 2

12=?—-30032wt

the factor 2 wt signifying that the frequency of the ¢% curve is twice that of the 7 curve.
2

°22—15 the average value of 72, the average value of ‘%— cos 2 wt over the whole curve being zero.

This may be a convenient opportunity to point out that the average value of any function such
as sin wt, sin 6, cos nwi, etc., for any number of complete periods is always zero.

The heating effect of the current 1, in the resistance of R ohms, is therefore given by the

2
equation P = °;— R joules per second, which may be written
P \2
P = (——_.) R watts.

Let us now compare two currents having equal heating effect, a direct current of unvarying value
I, and an alternating current of peak value .#, which are assumed to flow through a resistance
of R ohms. The steady current has a heating effect of 72R wafts, and the alternating current

2
a heating effect of (—%) R watts. The heating effect of the two currents will be equal if

() i=7

f=l—=1},0r I = ——
V2 V2
i-_ciﬁ or 707 4 is called the root-mean-square or R.M.S. value of the
carrent whose peak valueis#. Whenever an alternating current is said to have a value I amperes,
without further qualification, the R.M.S. value is implied. Also, since the heating effect of a

The expression °—9§ =

direct current is equal to %- joules per second, the R.M.S. value of an alternatmg voltage of

.7 _
peak value ¥ is '\75 When used in this way the factor 4/2 is called the peak factor. It will

be observed that three conventions of notation have been introduced in the preceding discussion,
the instantaneous value of an alternating quantity being denoted by a small italic letter, the
peak value by a cursive or script capital, and the R.M.S. value by an italic capital. “This
notation will be followed throughout this chapter.

Wave-Form .

2. Up to the present we have considered only those alternating quantities which obey the
simple sine law, but the shape of the graph obtained by plotting the instantaneous value or
displacement of the quantity at various intervals of time may take any one of an infinite variety
of forms, and this displacement-time curve may be referred to as the wave-form of the quantity.
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Provided that the wave-form repeats itself at regular intervals, it can be proved that it is built
up by the addition of a humber of simple sine waves of various frequencies. The frequency of
each component sine wave is an integral multiple of some fundamental frequency (which may or
may not be present), and is said to be in harmonic relation with the latter, while the higher
frequencies are called the harmonics of the fundamental. If the average value of the quantity
over any number of complete periods is not zero, a constant displacement must also exist ; for
instance, if the quantity under consideration is an alternating current, the wave-form being
complex and repetitive, it may be represented by an equation of the form 3

i=1Ig+ I, 51n (o 4+ @;) + Iy 580 (2 0t + @) - Fgsin (3 0t +-9) + ...

I, is the average value of the current over any number of complete periods and may be regarded
as a direct current superimposed upon the alfernating components. The fundamental frequency

2 and this is also referred to as the first harmonic. The second harmonic has a frequency of

2n
twice the fundamental or %’i; , while the third harmonic frequency is ?2—:—: and so on. The angles

represented by the symbols ¢,, @5, @5 ...... are inserted to signify that it is not necessary for
all the components to pass through zero displacement at the instant arbitrarily assumed to be
- zero time,

is

3. Frequencies which are even multiples of the fundamental frequency f, e.g. 2f, 4f, etc. are
called the even harmonics, and those which are odd multiples, 3f, 5f, etc. are called the odd
harmonics. An EM.F. generated by rotating machinery is free from even harmonics, but may
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Fi1c. 2, CHAP. V.——-Wave with third harmonie.
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FrG. 3, Cuar. V..—Wave with fifth harmonic.
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contain odd harmonics. This entails that the positive and negative half-cycles have exactly the
same wave-form, which must be true if the E.M.F. is produced by rotation of a conductor in an
unvarying magnetic field. The odd harmonics are produced by uneven flux distribution, and
do not occur if the field is uniform as it was assumed to be when considering the production of an
alternating E.M.F. in the preceding chapter. Typical wave-forms containing odd harmonics
only are portrayed in figs. 2 and 3. Even harmonics are frequently found in radio circuits, a
particular instance being the alternating current flowing in the anode circuit of a valve transmitter.

v

F1c. 4, CHAP. V.—Wave with second harmonic.

The existence of an even harmonic in a given wave-form may be instantly detected because its
presence causes the negative half-cycles to be of a shape differing from the positive half cycles.
The point is illustrated in fig. 4 which shows the result of adding to a sine wave a secon harmonic
which bears a certain phase relationship to the fundamental. This wave-form, with the addition
of further harmonics of small peak value, is often met with. The wave-form resulting from the
addition of the two components mentioned may be represented by the equation

1= sin wt—-"zgsz'n(Zwt—l—g) .

Effective value of current of complex wave-form

4. In order to find the heating effect of a current of non-sinusoidal but recurring wave-form
we may utilise the result already obtained for the simple sine wave. If the current flows through
a resistance of R ohms, the component current of fundamental frequency will cause energy to

2

be expended at a rate of {2_13_ joules per second, while the second harmonic component will
2

cause an expenditure of energy at a rate of {22-‘3 joules per second and so on. The total energy

expended will therefore be given by the expression

P_IZR-{— R+ R—|— ......

- R{I o (vz) (vz) (x/z) """ }

But this is equal to I* R, if I is the effective value of the current. Hence

I:J{Iog+(%>2+(%)2+<%)g ...... }

or if 1,, I, I, etc. are the R.M.S. values of the currents of peak value 4,, 4,, #; etc.

I= J{Ioﬂ S AR AR }
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The peak factor for the complex wave is defined in the same way as before, being the ratio
of the peak value to the R.M.S. value. The mean value of a single half-cycle of an alternating
current is sometimes required. Consider first the simple sine wave ; we may obtain an approach
to the average value of sin 6°, from & == 0 to 8 = 90°, by means of a table of sines, adding up
the whole series and dividing by the number of values given in the table. This is a laborious
process, but if actually performed it will be found that the average value of sin 0 from 0 to 180°
is very near to -637. Actually the calculation can be performed with much less labour, although
the mathematical ideas involved are more complicated. The result of such a calculation gives

the average value of siw 6 during one half-cycle as —7% which is -63686. Hence the average value

R.M.S. value .

of a sine wave over one half-cycle is 2 times the peak value. The ratio is called the
% mean value

form factor, and is equal to 1-11 for a sinusoidal wave.

For any wave-form whatever, the average value per half-cycle may be obtained by drawing
the wave to some convenient scale, calculating its area using the mid-ordinate method or Simpson’s
rule, and dividing the area by the length of the base line which represents one half period. An
approximation to the average and R.M.S. values may also be obtained from the instantaneous
values at a number of equal intervals during the cycle, as in example (2) below.

Examples.—(1) An alternating current is represented by the equation

1 = 250 sin i + 125 sin 3 wt -+ 50 sin 5 wf.
Find its R.M.S. value.
Here [y = 0,8, = 250, 4, = 0, J3 = 125, 4, = 0, 5 = 50.

1= VB0 125 50

2 7 T3
= V31250 + 7812-5 + 1250
= V40312'5

= 201 amperes (neatly).
(2) An alternating voltage is found to pass through the instantaneous values given in the
following table.

Angle 0° 15° 30° 45° 60° 75° 90°
Voltage .. 0 25 50 88 130 175 225
Angle .. 105° 120° 135° 150° 165° 180°  195° etc.
Voltage . 270 230 165 80 30 0 —25 etc.

the negative half-cycle being of the same shape as the positive.
Find an approximation to the R.M.S. and average values, and the peak and form factors.
The average value of one half-cycle is

—112 [0+25+50+88+130+175+225—|—270+230+165—!—80-]-30]

1468
= —E = 122 volts.
1
The ratio —or value is 12213 = -453 which may be compared with the value -637 for a

] peak value 270
sinusoidal wave. The R.M.S. value is the square root of the mean of all the squares of the
above ordinates, i.e.

S [0 + 625 + 2500 + 7744 + 16900 + 30625 + 50625 + 72900 + 52900
=12

+ 27225 + 6400 + 900
270344
= T 2__: 29529
V = V22529

= 150-9 volts.
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peakivalue 270 _ . . .
The peak factor, RMS valne = 1509 — 179 which again should be compared with the

value 1-414 for a sinusoidal wave.
R.M.S. value  150-9

mean value 1223
it will be found to be more peaked than a sine wave. Such a wave has high valucs for its peak
and form factors while the converse is true of flat-topped waves.

The form factor,

= 1:23. If the wave-form is plotted from the data

MEASUREMENT OF CURRENT, VOLTAGE AND FREQUENCY

Ammeters and voltmeters

5. From the foregoing, it will be appreciated that any type of ammeter or voltmeter in
which the deflection is proportional to the average value of the current or voltage is unsuitable
for use in A.C, circuits. Hot-wire ammeters, thermo-ammeters and moving iron ammeters may
be used for measurement of alternating current, and hot-wire and electrostatic voltmeters for
the measurement of alternating P.D. In general it may be stated that instruments which
depend for their action upon any form of permanent magnet are unsuitable for use in A.C.
circuits. Instruments depending upon magnetisation by the current, for example moving iron
instruments, can be used for A.C. measurement, but special care is necessary in the design, in
order to reduce the effects of eddy currents. This necessitates the sub-division of any metallic
parts in proximity with the current-carrying conductors, and may be explained with reference
to the repulsion type of ammeter. If the coil is wound upon a metal former, it is necessary
that the former should be cut completely in a radial direction, so that eddy currents cannot
circulate completely round the coil former. The iron portions may also be laminated for the
same reason. Theoretically, if such an instrument is calibrated with steady current its scale
should read R.M.S. value when connected in an A.C. circuit, but in practice this is not quite
true, partly on account of the varying permeability of the iron with varying magnetising current,
and partly owing to the inductance of the instrument which has no effect when the Instrument
is used to measure direct current. It is therefore desirable that such instruments should be
calibrated by alternating current of the wave-form and frequency with which they are to be
employed.

6. Hot-wire instruments have the great advantage that the deflection is independent of
wave-form and frequency, provided that the resistance of the instrument is the same at all
frequencies. It may be assumed that a hot-wire instrument calibrated at say 250 cycles per
second, may be used without fear of serious inaccuracy on frequencies between 25 and 500 cycles
per second, but may be in serious error at higher frequencies.

Dynamometer instruments are moving coil instruments of special design. Instead of being
established by a permanent magnet as in the instruments commonly termed “ moving coil
type ” the magnetic field is supplied by a fixed winding carrying an alternating current, this
winding being connected in series with that of the moving coil. These instruments are expensive,
and offer no advantages over hot-wire instruments as ammeters or voltmeters, but by a simple
modification the principle is employed in the construction of one form of watt-meter, which
is described later.

Frequency meters

7. Two forms of frequency meter are found in low (or commercial) frequency circuits,
namely the tuned reed pattern and the induction type. In the tuned reed pattern (fig. 5) a
number of steel strips are so adjusted that each vibrates at a particular frequency. A laminated
soft iron core carries a magnetising winding consisting of a great many turns of fine insulated
wire, the winding being connected across the supply mains in the same way as a voltmeter,
and the steel strips or reeds are arranged in such a manner that they are acted upon by this
electromagnet. Any reed which is adjusted to the frequency of the supply at any particular
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instant is caused to vibrate with appreciable amplitude, although reeds of different frequency
are scarcely affected. To facilitate observation, each reed carries at its free end a small rect-
angular metal flag, and the frequency is obtained by noting on the adjdcent scale the frequency
corresponding to the reed having maximum amplitude of vibration. The induction type (fig. 6)
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Fig. 5, Cuar. V.—Frequency meter, tuned reed pattern.

consists of two coils which are mounted at right-angles and on a common axis. One of the
windings has connected in series a large non-inductive resistance, while the other has a low
resistance coil of large inductance in series. The two elements thus formed are each connected
across the supply mains, These two coils co-operate in the establishment of a magnetic field
in the space enclosed by the coils, and the direction of this field depends upon the ratio of

_LINE

Fic. 6, CHAP. V.—Frequency meter, induction pattern,

current in the two windings. As will be seen atter a study of the following sections, a change
of frequency will make little or no difference to the current in the predominantly resistive branch,
but the current in the winding which is predominatingly inductive will vary inversely as the
frequency. Hence the direction of the resulting field varies with frequency, and this direction
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will be taken up by a soft iron needle which is mounted upon a spindle on the common axis

of the coils. A pointer attached to the spindle moves over a scale which is graduated in cycles
per second.

The term frequency meter is also sometimes employed to denote an instrument which is

used to measure very high frequencies (of the order of 10* cycles and above). Such instruments
are described in a later chapter.

REPRESENTATION OF ALTERNATING QUANTITIES BY VECTORS
Vector quantities

8. A vector quantity is one which has direction as well as magnitude, for example, the
magnetic field strength H at any point in the field is a vector quantity. Those quantities which
have magnitude only, e.g. work, are called scalar quantities. A vector quantity may be
represented in magnitude and direction by a straight line, and such a line is often referred
to as “‘the vector ” representing the quantity. When used in connection with alternating
quantities, vectors are used in a somewhat special manner. The line is supposed to be fixed at
one end and to rotate at the frequency of the alternation. For example, consider a voltage
v =7 sin wt. This voltage may be represented by a line of length 7° units, rotating in an
anticlockwise direction with reference to an arbitrary datum line or reference vector, which is
usually drawn horizontally to the right of the centre of rotation as shown in fig. 7. After any
time ¢ seconds, the instantaneous value of the voltage, v, is shown by the height of the vertical
projection of the end of the vector. In fig. 7 the vector has rotated through an angle of wi

‘I

O} %—» Reference veclor

Fig. 7, Cuap. V.—Rotating vector.

radians, and the instantaneous voltage is shown to the same scale as the vector 7° by the line
PQ which is equivalent to the projection of its length upon the vertical axis. In the study of
alternating currents the advantage of vector representation is its ability to depict directly the
conception of phase difference. When two such quantities of the same frequency pass
through corresponding points in the wave-form at the same instant, they are said to be in phase
with each other, while if they pass through corresponding points at different instants, there is
said to be a phase difference between them, and one is said to be leading or lagging on the other.
In order to show this a simple example may be taken, thus let & represent the peak value
of an alternating E.M.F., and 4 the corresponding current, then if & and 4 are in phase they
may be considered as’vectors which are coincident in direction and rotate at equal speed. &
and ¢ are therefore represented as in fig. 8a. Actually 4 lies upon &, but for clearness the two
vectors are drawn side by side. In practice & may either be in phase with, or lead or lag upon



CHAPTER V.—PARA. 8

the resulting current ; in fig. 8b ¢ is shown as leading, and in fig. 8¢ as lagging, with reference
to the E.M.F. By convention the direction of rotation is always anticlockwise, and is shown on
the vector diagram by a curved arrow.

VAN

$
(a) (b) (c)

Fic. 8, CHAP. V.—Vector representation of phase difference.

Although the principle of vector representation is based upon the peak value, vector diagrams
may be drawn to a scale of R.M.S. values, but it must then be remembered that the projection
of the vector upon the vertical does not give the instantaneous value; although the phase difference
between various quantities of the same frequency is still shown.
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Fi16. 9, Cuap. V.—Addition of vectors.
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9. Like scalar or arithmetical quantities vectors may be added and subtracted. For instance,
an aeroplanc may have an actual speed of 100 miles per hour in a direction true North, but a wind
from the North-west of 30 miles an hour may also act upon the machine. The velocity of the
aeroplane with reference to the ground will then be the vector sum of the two velocities, and may
be found by drawing the two vectors to scale, as shown in fig. 9. The two vectors form two sides
of a parallelogram, and the vector sum can be found by completing the parallelogram (as shown
by dotted lines) and then drawing the diagonal through the origin. The latter then represents
the sum of the two vectors in magnitude and direction. Subtraction of vectors is carried out

1
!
N Be(-A)
| /// =B—A

Fi1c. 10, Crap. V.—Subtraction of vectors.

by the following method. Suppose that A and B are two vectors, and the vector difference A-B
is required. This may be written A 4 (-B), and this expression gives the clue to the graphical
solution, which is as follows. Draw the vectors A and B, then draw a vector equal in magnitude
to B, but contrary in direction. This vector is then equal to -B. Perform the addition of the
vectors A and -B by the parallelogram rule given above. The diagonal of this parallelogram
passing through the origin is equal to the vector A-B, and it must be clearly understood that

the vector A-B is not equal to the vector B—A, because its direction is different, as will be
understood by reference to fig. 10.

The rateof change of a sinusoidal quantity

10. In earlier chapters, several illustrations of Faraday’s law have been met, and it will be
remembered that in its mathematical form the law is

di
. e=1 z‘t
Hitherto the symbol Z—; has been considered merely as an abbreviation of the phrase ‘‘ the rate

of change of current with respect to time . The unit of % is the ampere per second, and its
numerical value must be known before the self-induced E.M.F. can be calculated. Since an
alternating current is constantly varying in magnitude, it becomes necessary to evaluate this
quantity for a sinusoidal wave, and in order to exhibit the principle of the method a definite
example may be taken. Fig. 11 (a) shews a sinusoidal current having a peak value of 100 amperes,
and it is required to find the rate of change at every instant during the cycle. The period is

-02 second, and this has been divided into 36 equal time intervals, each of 18%00 second ; since

one cycle is equal to 360° each interval corresponds to an angle of 10°. The instantaneous value
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of the current at each of these intervals in the first quarter of a cycle is given in the table below,
and these values will be repeated, in the reverse order, during the second quarter of the cycle.
Between 180° and 360° the current values will be a repetition of those in the first half-cycle but
with negative sign.

Angle .. 0° 10°  20°  30° 40° 50°  60°, 70° 80°  90°

H . .. 0 17-4 34-2 50 64:3 766 B86:6 94 98 5 100
k.w_J;Y__JL__Y__}L_W_A_ﬁ,__L_Y_JLV_/L_Y_A__V__/
Difference ... 17-4 16-8 15-8 143 123 10 7:4 4-5 1-5

In the third line of tbe table the change of current during each interval is given. During
the first interval, the current increases from zero to 17-4 amperes, during the second from 17-4

to 34-2, an increase of 16-8 amperes, and so on. These successive increments of current are
plotted in fig. 11b.

The average rate of change of current during each interval is found by dividing the change
of current by the duration of the interval. For example during the first 10° the average rate

of change is 17-4 = %0 or 31320 amperes per second. During the next 10° the average rate of

change is 16-8 - 181_0—6 or 30240 amperes per second. On repeating this process for the whole of

the first quarter of a cycle it will be seen that the rate of change of current is greatest where the
current itself is small, but as the current increases the rate of change decreases. At the end of
the first quarter of a cycle, the current reaches its peak value and is momentarily neither increasing
nor decreasing. Itsrate of change is therefore zero, and is so plotted in fig. 11b.

During the second quarter of a cycle the current is decreasing in value and its rate of change
must be regarded as negative in sign, while during the third quarter the current is increasing in
value but is of negative sign, and its rate of change must be regarded as negative. During the
fourth quarter the current is decreasing in value and is still of negative sign so that the rate of
change is again positive. The average rate of change’of current has been plotted in fig. 1lc
and a smooth curve drawn through the points. This curve is incomplete because no values
have been obtained for the rate of change at the instants £ = 0, ¢ == -01 second and ¢ = -02
second. It can be seen nevertheless that it is very nearly a sine curve moved through a quarter
of a cycle, that is, a cosine curve. If the period were divided into a larger number of intervals
before carrying out the above process, the approximation would be closer still. It may now
be stated that the instantaneous value of the rate of change of a sinusoidal current, 7 = ¢ sin wi
is a co-sinusoidal quantity and may be represented by the equation

di

i K cos ot
where K is the maximum rate of change, The maximum rate of change occurs when the current
itself is passing through the value zero, but its exact value cannot be obtained by the method
used above. It can however be dedaced as follows. Referring to fig. 12, let 8 be the magnitude
of the angle ROP in radians, and the length of the radius OR be . Since the radian measure of

an angle is given by the ratio rﬁ;is, o =2° RP, while sin 6 = 9’3 It is obvious that the arc
sin 0

RP is of greater length than the perpendicular QP, and therefore that 9

Now allow the angle ¢ to decrease to 8” by rotating OP' into the position OP’. The magnitude
of 8’ is given by the ratio arc RP while sin 6" = 9 f and smo’{i although smaller than unity

r
has approached nearer to that value. Ip the lower diagram of fig. 12 the angle 8 has been made
still smaller ; the arc RP and perpendicular QP are now very nearly of the same length, and it

is less than nnity.
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is_ deduced that if the angle decreases without limit, or approaches the value zero, the ratio
S_}%f approaches the value unity. This conception is applied in finding the peak value of the
rate of change of current by taking a small interval of time, 8, measured from the time {=0.
As i = & sin wt, at the end of the interval & the current will be equal to & sin w 8 and the average

rate of change %% during the interval will be {_S_‘l%tgﬂ‘ As the interval & is made smaller and
smaller so the expression & sin o & becomes more nearly equal to 4 w 8 and

3% I wdl

2= o 7

Fic. 12, Cuar. V.—Relation between arc ¢ sin 0.

This is the maximum value of the rate of change of current. Hence, if
i =3 sin
di

;1—1= @ & cos wt

In the above example, f = LI 50 cycles per second and the maximum rate of change of
T g

carrent is 2z X 50 % 100 or 31416 amperes per second.

11. It is often necessary in alternating current work to find the rate of change of ‘a
quantity. Let us first consider a simple instance of varying velocity taking a motor car
starting from rest as an example. On letting in the clutch, the car starts to move, with
incteasing velocity. Now the velocity is the rate at which its position is changing, while the
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rate at which its velocity is increasing is the acceleration. Thus a certain car was found to
increase its speed from 10 to' 31 miles per hour in seven seconds, and its acceleration 1s

31-10 miles per hour _ . . . . 21 x 5280 .
= sec. or since 1 mile = 5280 feet, the acceleration is 3600 X 7" or 4-4 ft. per

. . . d o .
second per second. When the car has travelled x feet its velocity v is d—:‘, while its acceleration

. d
is the rate at which its velocity is changing, or ‘—f—;—; Now as v = Z—f, the acceleration is %(2{;)

2

and as a matter of convenience this is written ZTZC‘ It must be fully realised that the indices are
not * powers "’ to which the quantities have to be raised, e.g. 4% is not “* d-squared "’ ; the symbol
2

%ti; must be regarded merely as a kind of shorthand sign for ‘ the acceleration of a body in the
direction x ”.

In the case of a sinusoidal quantity such as ¢ = J sin wt the rate of change of which is
di .
2—: = w & cos et, to find the rate of change of the latter it is necessary to repeat the proce-

dure used in finding g but operating upon the cosine curve instead of the sine curve. The

detailed process will not be repeated, but the results can be stated thus :—

If 1= 9 sin of
%:meﬁicos'wt
%=—w2&si'nwt=—w2i

ALTERNATING CURRENT CIRCUITS
A.C. resistance

12. When energy is supplied to any electrical circuit, some portion may be expended in
doing useful work, but a portion is always expended in producing heat. If a circuit has a resis-
tance R and the R.M.S. current flowing through it is I amperes, energy is converted into heat
at a rate of 72 R joules per second. In direct current circuits, the resistance of any conductor

can be calculated from the relation R = f—;-‘)— In alternating current circuits, however, the
heating effect is not confined to the conductor, for any and every other conductor situated within
the magnetic ficld set up by an alternating current is the seat of currents due to the induced
E.M.F. (Faraday’s law) and consequently energy is converted into heat in these conductors.
If any'ferro-magnetic material is situated in this field, the continual reversal of the direction of
magnetisation necessitatesa further expenditure of energy, giving rise to what is called the hysteresis
loss. The rate at which energy is dissipated by induced currents and by hysteresis depends
upon the frequency of the A.C. supply. Energy may also be dissipated in the form of radiation.
The consideration of this phenomenon is deferred until a later chapter, but the position may be
summarised in the statement that for alternating current practice a new definition of resistance
must be introduced, namely : The total effective resistance of an-A.C. circuit is that quantity
which, when multiplied by the square of the R.M.S. current, is equal to the rate at which energy
is dissipated. If P is the rate of energy dissipation in joules per second or watts,

P=1I2R
and R =

| oy
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The total effective resistance includes that due to all causes of power dissipation. As
copper is almost universally employed for electrical conductors the power loss due to the
conductor itself is often referred to as the copper loss. This in turn may be divided into three
components, (i) the D.C. resistance, given by the formula R = f—i— (i) the resistance due to a
phenomenon called skin effect, which may be described as a tendency for the current to flow
on the surface of the conductor instead of being uniformly distributed over its cross-section,
and (iii) that due to what is termed proximity effect, which causes the current to concentrate
in those portions of the conductor which are most remote from other conductors. Both skin
and proximity effects are caused by the induction of eddy currents. Fig. 13 shows a portion
of a conductor carrying an alternating current which is represented by solid lines parallel to the
axis of the wire. The current gives rise to an alternating magnetic field, both inside and outside
the conductor, and therefore to induced E.M.F.’s which cause eddy currents to circulate in
paths somewhat as shown by the dotted lines, in opposition to the main current in the centre
of the wire but in the same direction at the surface. The effect of this non-uniform current
distribution is to cause an increase in the effective resistance of the conductor. To understand
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Fi1c. 13, Crapr. V.—Skin effect in isolated conductor.

how this increase occurs, imagine a conductor of D.C. resistance R ohms, of square cross-section
and one inch side, to carry a current of I amperes. Divide the cross-section into four equal
portions ; each quarter of the conductor will then have a resistance of 4R ohms dnd with a

uniform current distribution will carry—i—amperes. The power dissipated in the conductor will

2
therefore be 4 X (g) X 4R == I? R watts. Now suppose that owing to some peculiar pheno-
&

menon, one of the quarters is prevented from carrying current, but that the total current remains

as before, namely I amperes. Each remaining quarter must therefore carry 3 amperes, and

2
the power dissipated will be 3 x (J—;) X 4R = % I? R watts.

By the definition given above the total ¢ffectivc resistance is the power dissipated divided by
the square of the current, or?3 IR =~ I? = g\R, and the A.C. resistance of the conductor in this

particular instance is g times the D.C. resistance. If several conductors are situated in close

proximity, as in an inductively wound coil, each turn will be the seat of eddy currents set up
by the current in adjacent turns as well as by the current in the turn itself. The current is then
constrained to flow in paths having the form shown by the shaded areas in fig. 14, and the
resistance is still further increased. This is the proximity effect mentioned above.

The total copper loss in a conductor may be obtained by adding the losses due to skin and
proximity effects to the ordinary D.C. loss. Considering only the resistance of wires of circular
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cross-section it can be shown that the increase of resistance is proportional to a factor z = nd 2fu

e
where d is the diameter of the wire in centimetres, f the frequency, u the permeability of the
material and ¢ its specific resistance in E.M. units. :

The A.C. resistance of a straight wire remote from all other conductors is
' Rs = Rdc (1 + F )

where F is the skin effect factor. If z is less than 2, F = while if z is greater than 100,

192’
F approaches the value 12_3:_3_. . Table VIII, Appendix A gives the value of F for the range
z=0-'1 to z=100.

The energy loss due to proximity effect may also be calculated and added to the other
components to give the total energy loss. Taking the simplest case of two parallel wires of

QOO

Fic. 14, Cuar. V.—Distribution of current in adjacent conductors (proximity effect}.

diameter d centimetres the axes of which are separated by a distance of ¢ centimetres, the
additional resistance Ry due to proximity effect is

G d?
Ry = Rae —
c -
4
where G, the proximity factor, also depends upon the value of z. If zis less than 0-5, G = é

approximately, while if z is greater than 100, G = l/_‘?_gs_f_l. The total A.C. resistance then

2
becomes Rac = Rac (1 + F + G%) provided that the ratio djc does not approach unity

closely. If however the wires are very close together a further correction must be applied in
the form of a factor J and

dz
G
Rac=Rdc 1+F+ cdz
1=Ja
This formula may also be extended to apply to any number of spaced parallel wires, becoming
y P P P
2
Rac = Rdc 1 + F _{_4___0_d2
=Ja

where % depends upon the number of wires in parallel. Values of G, J and # are given in Tables
IX and X, Appendix A.
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13. The above expressions may be found to be of practical value in calculating the resistance
of aerial wires and feeder lines, or of solenoids or flat spiral coils, provided they are wound in a
single layer and that the coil radius is large compared with the winding length or depth. In
other cases the calculation of the proximity effect becomes extremely complicated and only some
practical conclusions can be given.

(i) Both the skin effect and proximity effect would be zero if eqnal current distribution
could be achieved. An approximation to equal current distribution can be attained by using
cable consisting of very fine strands of wire so plaited or twisted that evety wire occupies
successively a position near the centre and on the outside, each wire being thus of equal inductance
and resistance. The strands may be made up in groups of three, similar to a rope, and it is found
that there is an optimum value for the diameter of the constituent wires, depending upon the
frequency. At extremely high frequencies it is impossible in practice to approach the extremely
fine stranding demanded by theory, and a solid wire offers less resistance than a stranded one
of incorrect design. To obtain any benefit from the use of “litz » cable, as this kind of wire
is known, a very high standard of workmanship is desirable. A broken strand, or a single strand
badly soldered to the terminal of the coil, may cause the latter to be less efficient than an ordinary
coil of solid wire. In the repair of transmitting inductances and similar apparatus this should
be constantly borne in mind.

(if) If solid wire is used, e.g. for receiving inductances, there is an optimum gauge of wire
for any given coil dimensions and frequency. As an example, consider the dimensions shown
in fig. 15 which were chosen for a coil of 2,000 microhenries intended for reception of Droitwich
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Fic. 15, Cuap. V.—Dimensions of multi-layer coil, 2,000 u H.

(200 kcjs). Different sizes of wire were used Jdor a number of windings, the winding space
being completely filled on each occasion by spacing the turns as much as possible. It was found
that if wound with the requisite number of turns of 36 s.w.g. its total resistance at the given
frequency was 22-9 ohms. This was reduced to 15-6 ohms by rewinding with 32 s.w.g. but a
further increase of wire diameter increased the resistance to 19-7 ohms. The greater portion of
this increase is due to the proximity effect. An increase of wire gauge to 24 s.w.g. increased the
resistance to 40 ohms.

(iii) Where heavy high-frequency currents are to be carried, copper tube is as efficient as
solid copper, and if this is not available copper strip should be employed. Copper tube is the
only conductor suitable for transmitting inductances for frequencies above 3,000 kc/s, and is
preferably silver-plated, particularly if rubbing contacts are to be employed. The silver plating
prevents oxidisation and great care should be taken not to destroy it by harsh cleaning processes.

Resistance in an A.C. circuit’

14. Tt is often convenient to consider the case where any of the three properties, inductance,
capacitance or resistance, is entirely absent from a given circuit, for in practice the effects of one
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or more of these is often negligible. Suppose thercfore that a certain circuit is entirely devoid
of capacitive and inductive effects, and consider the application of an EMM.F. ¢ = & stn ot
to a resistance of R ohms. As there is no other E.M.F. (such as a counter-E.M.F. of self-induction)
and no tendency for electrons to accumulate in any part of the circuit, i.e. no capacitance, a
current will commence to flow as soon as the E.M.F. is applied, and this current will be pro-
portional to the EIM.F. Thus in a circuit of this nature Ohm’s law is obeyed, and the

instantaneous value of the current is % or é—p—szl—’;—f{t‘ The peak value of the current is

S = %and its effective or R.M.S. value I = g The current will be in phase with the applied

E.M.F. as shown by curves and vectors in fig. 16.

L
it

()

Fic. 18, Cuapr. V.—Effect of resistance in A.C. circuit.

Inductance
15. The inductance of a given circuit is not truly a constant, but depends to some extent

upon the frequency and intensity of the current flowing in it. This is particularly true if any
ferro-magnetic substance is situated within the field of the coil. It has been shown that the
2

value of the inductance is given by an equation having the form L = Kév where S is the

reluctance of the path of the tubes of magnetic flux, When iron or any other ferro-magnetic
material is present in the magnetic field, the reluctance varies with the factors above-mentioned,
because both affect the effective permeability of the magnetic path. It is usual to distinguish
between inductances designed for low frequencies, below about 10,000 cycles per second, and
high frequencies which are those higher than 10,000 cycles per second. This dividing line between
high and low frequencies cannot be drawn with precision and for some purposes it is desirable
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to include frequencies up to about 20,000 cycles per second in the “ low frequency * category.
This division corresponds to the fact that vibrations of the air of from 16 up to about 20,000
cycles per second produce the sensation of sound, and it is usual to refer to this range of frequency
as the audio-frequency band even if no question of sound production is involved. The frequencies
above the audible limit are referred to in a corresponding manner as radio-frequencies even if
no question of radiation arises.

Inductances intended for use in circuits carrying audio-frequency currents are invariably
fitted with iron cores, which are laminated to reduce eddy current loss, while the iron used is of
a kind which has low hysteresis loss. In the audio-frequency portions of radio apparatus,
¢onditions frequently arise in which it is necessary that the winding should carry a current of
complex wave-form, consisting of a steady component and several alternating components.
The inductance of such a coil under these circumstances depends upon the magnitudes of both
the A.C. and D.C. components. To illustrate this, consider the magnetisation or B/H curve,
shown in fig. 17. Suppose that the magnetising force due to the D.C. is that corresponding to

Fic. 17, Cuar. V.-—Hysteresis loop showing definition of incremental permeability.

the ordinate H,, then the average flux density in the core will be B,. The magnetising force
due to the A.C. will be superimposed upon this, and the iron will be carried through a cycle of
magnetisation, as shown by the small hysteresis loop SPQR. The effective permeability with
respect to the alternating current is then not the ratio B,/H, as for direct current, but the average

slope of the small loop, which may be represented b ﬁ, and this is always smaller than B,/H,,
P y SH B 1
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hence the inductance of the coil is reduced by the presence of the direct current. The larger
the steady magnetising force the less will be the value of 273 The expression % is called the
incremental permeability to distinguish it from the ordinary permeability B/H. The introduction
of an air gap into the iron core results in an increase in reluctance of the magnetic path, but also
an increase 1n the incremental permeability. The net effect may be an increase jn the efféctive
inductance for alternating current while the inductance will also tend to remain constant, hence
the cores ef inductances for use under conditions in which the conductor carries both D.C. and

A.C, almost invariably contain a small air gap.

16. Except in special circumstances, iron cores are not used in inductances designed for
radio-frequency circuits for two reasons. TFirst, the eddy current loss can only be kept within
reasonable limits by sub-~division of the core material (i.e. lamination) to a degree which is often
impracticable. Second, it is desirable that the value of the inductance shall be independent of
both the frequency and magnitude of the current. Radio-frequency circuits therefore usually
employ air-core inductances, typical specimens of which have been briefly described in Chapter
II. The capacitance which exists between all adjacent conductors must also be taken into
account, for it is obvious that the presence of any metal inside the coil will increase this capaci-
tance, whereas is it usually desirable to maintain it.at the lowest possible value.

In spite of these difficulties, however, the cores of certain inductances in radio-frequency
circuits are of iron or nickel-iron alloy in the form of a very fine powder which is amalgamated
with a phenolic material as a binder. These coils are largely used in aircraft receivers, and receive
further mention in a later chapter.

Inductance in an A.C. circuif

17. The effect of inductance in any circuit is to oppose any change in the value of the current,
owing to the counter-E.M.F. set up by the changing flux linkage. If the inductance of the
circuit is L henries, Faraday's and Lenz’s laws tell us that the counter-E.M.F.is}, = — LZ—; volts.

Now let us assume that an alternating current ¢+ = ¢ sin ¢ flows in a circuit having an inductance
of L henries, but of negligible resistance and capacitance. Earlier in this chapter it was shown
that if the current is of the assumed form, the rate of change of current is% = o J cos wl. The
counter-E.M.F. of self induction is therefore — oL J cos wt.

The applied E.M.F. must be equal and opposite to this counter-E.M.F. and no more, since
the only work which the E.M.F. has to perform 1s to maintain a sinusoidal flux in the inductance.
The applied E.M.F. is therefore

3

e = ol 9 cos wi
= oL I sin (wt—l-g)

Hence the applied E.M.F. is also sinusoidal in form, but leads on the current by—:rzz radians or

90 degrees. The frequency of the applied E.M.F. is the same as that of the current, which is
of course to be expected. The peak value & of the E.M.F. is oL &£ volts,and the phase relation-
ship between & and & is shown by curves and vectors in fig. 18. It will be observed that this
relation may be expressed either as “ & leading on ¢ ”’ or ** # lagging behind €. The latter is
more usual, and the relation between the current and voltage may be written

i——ﬂsz'n wt — =
Yy ( 2
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It is often convenient to consider R.M.S. rather than instantaneous values. Since I =

V2
and £ = %, the relation between I and E is given by the equation I = a%—. Comparing this
with Ohm’s law for direct current I = g- it will be seen that L is analogous with R in deciding

the magnitude of the current for a given applied voltage.

Although L itself is in henries, the expression oL is in ohms, because the dimensions or
physical attributes of theratio of voltage to current must always be the same. The factor oL is
termed inductive reactance of the circuit, and may be thought of as the opposition offered by an
inductance to the flow of an alternating current, but it must be borne in mind that in addition
to limiting the magnitude of the current, it causes the current to.lag behind the E.M.F. which
g;oducei it. The symbol for reactance is X, and inductive reactance is denoted by X, thus,

1. = WL.

€ /

ai ,
dil

41[
3
N
a

(8) (b)

Fi1c. 18, Cuap. V.—Effect of inductance in A.C, circuit.

Inductances in series and parallel

18. If the alternating current 7 = ¢ sin wt flows through several inductances L,, L,, L,, etc.,
in succession, a counter-E.M.F. is set upin each inductance, equal to — wlLt, — wLgy, — wLgt, etc.
The applied voltage must be sufficient to overcome the sum of all these counter-E.M.F’s. and
therefore, considering R.M.S. values only,

E =wL,I 4+ oL, + wL; 1, etc.
=wl (L4 Ly Ly........ y
=awll

where L=L,+L,+ L,

Hence the total inductance L is the sum of the indivfdual inductances which are in series in the
circuit.
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If the inductances L,, L,, L,, etc., are placed in paralle], having a common sinusoidal P.D.
of ¥ volts between their ends, the curreat in each inductance, taking R.M.S. values as before,

will be

Il+12+1,,=g(fll+£;+£;)

I, + I, + I, is the total current flowing in the main or unbranched portion of the circuit and
may be denoted by I. I and V are connected by the relation I =—£—, where L is the joint

inductance of L,, L,, Ly in parallel.
Collecting these equations we see that

R4
oL
Vsl 1 1
Lt L+ h=o(r+r+1)
since I=I,4+1,+1,

1 1 1 1
I-LYLYL

I =

The reciprocal of the joint inductance is equal to the sum of the reciprocals of the individual
inductances. It will be observed that the rules for inductances in series and in parallel are the
same as for resistances.

A particular instance which often arises in practice is the calculation of the joint inductance
of two inductances L, and L, in parallel. Since

1 1 1
ITL 'L,
giving the right-hand member of the equation a common denominator
1 _Li+1,
L L,L,
L.L
hence L = -—%22
T L+ L,

and it is seen that the joint inductance of two inductances in parallel is given by the product
of the two divided by their sum.

Effect of mutual inductance between coils in parallel

19. Consider the circuit given in fig. 19 which may represent the two coils of a variometer
inductance. If an R.M.S. voltage E of frequency —;’—7;
in the coil L, and a current of I, amperes in the coil L,. If the mutual inductance between the
coils is zero the counter-E.M.F. induced in the two windings will be — oL, I, and — oL, I,
volts respectively. If the mutual inductance has the finite value M henries, however, the

is applied, a current of I, amperes will low
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counter-E.M.F. induced in the coil L; will be —(wL, I, 4 wMI,) volts and in the coil
L, —(oL, Is+4 oMI,) volts. As the resistance is assumed to be negligible, the counter-E.M.F.
is equal and opposite to the applied E.M.F. and

ol, I, +oMI,= E .. .. .. .. o (e
oMI,+ owl,I,= E .. .. .. .. R ()]
or ol Lol + oML, I,= L, E .. . ce e . (o)
oM, 4+ wML,I,= ME .. .. .. .. .o {d)
Subtracting («) from (c) )
ol,L,—M¥I,= (L,—M)E.. .. o - (o)
also oLy M I, + oM?*[,= ME .. .. . ‘e (N
ol o MI, + ol L, I,== L E .. - . . o (8)
Subtracting (f) from (g)
o, Ly,~M3I,= (L,—M)E.. ‘e . . (A
From (e) and (A)
(Lyo—M)E Ly —-M)E

L=

L= D=L, - -

Frc. 19, Caap. V.—Inductances in parallel, possessing mutual inductance.

The total current Iis I, + I,

I, —m5 %
The effective reactance of the two coils in parallél is —ﬁ—':- = wl, and

_ oL, L, — M3

ol =7 1 I,=3Wm
Hence the effective inductance of the parallel combination, including the mutual inductance, is

I = L,L,— M2
When the coils are perpendicular to each other the mutual inductance is zero and the effective
inductance is L—Ll_f'—zL as already shown. With any other relative disposition the mutual
1 2

inductance has a finite value which may be either positive or negative. These signs are purely
conventional, and it is convenient to regard the mutual inductance as positive if its effect is to
increase the total inductance ; this was adopted in writing the equations (4) and (b). The opposite
signs are sornetimes adopted in certain theoretical work. The effect of the mutual upon the total
effective inductance is seen in the following example.
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Example 3.—(i) The two coils of a variometer, each having an inductance of 100 micro-
henries, are connected in parallel. When the coils are co-axial, the mutual inductance is
90 microhenries. Find the maximum and minimum inductance.

o s L Ly — M2
When M is positive, L = IL,+L,—2M

_ Lr— M2
2L — M) .
(Ly+ M) (L, — M)~
2(L, — M)
L+M 190
2 T2

When M is negative, L = (Ly ;— é{)le‘)‘ M)
L —M
2

(ii) If the mutual inductance were 98 microhenries, what would be the total range of
inductance ?

= 95uH

= 5 uH

.From the above, with positive M, L = w =99 uH
and with negative M, L= 2B

Hence the total range is from 99 to 1 micrchenry. If every tube of magnetic flux linked with
every turn of both coils, the inductance range would befrom 100 to 0 microhenries.

Resistance and inductance in series

20. In the circuit diagram of fig. 20 a source of alternating E.M.F. supplies current to a
circuit consisting of an inductance of L henries and a resistance of R ohms, connected in series.
It is required to find the current which will flow, and the relative phases of current and voltage.
The opposition offered by the cireuit is now of two kinds (i) the resistance, which limits the value
of the current, but will cause no phase difference, and (ii} the inductive reactance, which also

limits the value of the current, and tends to cause it to lag behind the applied EMM.F. by -g

radians. The applied E.M.F. can therefore be divided into two components, one of which may
be considered to overcome the resistance, or to supply the energy converted into heat, and the
other to overcome the inductive reactance or to supply energy which is stored in the form of a
magnetic field when the current is increasing in value, and returned to the circuit, when the

current is decreasing.

The instantaneous values of these components may be dengted by vs and 7. Assuming
the current to be sinusoidal, the carves in fig. 20 show the nature of their variation. The com-
ponent vy has the instantaneous value ¢R, and is in phase with the current, while the component

v, has the instantaneous value wLi, and leads on the current by g radians or 90°. The total

voltage supplied by the alternator at any instant is found by a.ddm§ the ordinates of the,two
curves, giving the resultant curve ¢, which represents the applied voltage. It is seen that the
latter reaches its maximum value before the instant of maximum current, but that the angle
. of phase difference is less than 90°.
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The relations between the maximum values ¥°;, #°, and & are more rapidly obtained by a
vector diagram (se¢ fig. 20). The component ¥ is in phase with  and the component ¥°;, leads
on & by 90°. The peak value of the applied E.M.F. is the vector sum of these and is obtained
by the method previously described. Their sum is however easily obtained by the well-known
*“ theorem of Pythagoras ”, i.e. if 2 and b are the two shorter sides of a right-angled triangle the
length of the third side is 4/a2 | b2 Applying this theorem

& = AT

Now Ve = R4, ¥V, = oL I

and ¢ = VRI)+ (oL 9)*
— 9 YT al

e e e - e e o - — —— ——— — M T -

4-—-’UR

Fic. 20, Cuar. V.—Effect of inductance and resistance in series.

From the vector diagram it is obvious that the current lags upon the applied voltage by an
angle 6. The magnitude of this angle is found from either of the following formulae :—

tan o = L2 _ oL
~ RS R °
sim 0 = ______________me =L
VR +(l)® 2
R 'R
s = ———— =
VR + (oL)? 2
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The inst-anta.peous value of the current is

VR + (L)
where 0 is the angle whose tangent is -‘%L (see above). The notation usually used is
ol

s -1_-
6 lan R

The R.M.S. value of the current is

Fom o

= VR (ol
which may again, be compared with Ohm’s law. In this case % = VR? L (wL)?, and
VR® + (oL)?is in ohms. It may be considered to represent the total opposition of the current

to the flow of current and is called the impedance of the circuit. The symbol Z is used for
impedance when it is not necessary or possible to express it in a more detailed form.

Example 4.—An alternating E.M.F. of 220 volts peak value, having a frequency of 100 cycles
per second, is applied to an inductance of 1:5 henries and a resistance of 600 ohms in series.
Find (i) the R.M.S. value of the current ; (ii) the peak P.D. at the terminals of the inductance ;
(iii) the angle of phase difference.

o = 2x f = 628
ol = 628 x 1-5 = 942 ohms
Z = VR® 1 (oL)® = V600? F 042°
= /36 X 10° + 88-75 x 10%

= 100 V'124-75

= 1120 ohms approx.
g .
E = —‘\75 = '707 X 220 = 155 5 VOItS-

(i) I =2 ="""" = -139 amperes (nearly).

(i) Peak P.D. at inductance terminals = oL & volts
= ,/21=1-414 X -139 = 1-965 amperes
& 220
o0 I=z=mm
ol & = 942 X 1-965 = 185 volts.

(i) 0 = tan—1 -‘%L

amperes = 1+965 amperes

942
== -1__
tan 600
= fan—1 1-57
Reference to a table of tangents gives § = 58°, to the nearest degree, which is of sufficient accuracy
for all practical work. Since the reactance is inductive, the current will lag on the applied

E.MF. by 58°.
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Impedances in series

21. If a number of pieces of apparatus having both resistance and inductance are connected
in series and an alternating E.M.F. is applied, the resulting current,  sin o, will set up a P.D.
between the terminals of each instrument. If the resistance of each is denoted by R,, R,, R,, etc.,
and the corresponding inductance by L,, L,, L, etc., the peak P.D.’s will be ¥°) = #V R,2 4 (oL,)?
¥y = IV R,2 + (wL,)? etc.

& will lag on 7°;, by an angle fan—1 L, oL, etc. The peak

R’ R,’
value, &, of the applied E.M.F. will be equal1 to the vector sum of ¥°;, 7°,, 7‘:, and the resulting
vector diagram is shown in fig. 21. It will be seen that

& =VI? (Ry + Ry + Rg)? + 9% (wLy + oLy + wly)?

or & =JV(R + Ry + Ry)* + o {L; + Ly + Ly)*

on 7°, by an angle fan—1

|
La)LJJ

Fia. 21, Caar. V.—Effect of inductive impedances in series.

oLy + Ly + Ly)
, . R+ Ry + R,
true no matter how many separate impedances of this kihd are connected in series.
In any of the foregoing vector diagrams, the three vectors form the sides of a right-angled
triangle having sides 42, #X, JR. The relative lengths of these sides, that is the shape of the
triangle, will not be altered if each $ide is divided by 2, giving a triangle of sides Z, X, R. This
is called the impedance triangle of the circuit and may be used instead of the true vector diagram,

The current £ will lag on the applied EM.F. & by an angle fan-1

and this is

in order to obtain the angle of phase difference 6, by means of the equations fan 6 = {Ig'

Capacitance

22. In Chapter I the flow of electric current in a circuit was compared with the flow of
water in a pipe line. Let us consider this analogy further. In fig. 22 the pipe line is supplied
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trom a pump which moves the water to and fro round the circuit instead of continuously in the
same direction. The friction of the water against the sides of the. pipe may be considered to
represent the resistance of the electrical circuit, and the inertia of the water, that is its opposition
to a change of motion, to represent its inductance. Suppose that the flow of water in the pipe
line is restricted at one point by a flexible diaphragm, then provided that the pressure is insufficient

Fic. 22, CHAP. V.—Hydraulic analogue of A.C. circuit containing a condenser.

to burst this diaphragm, the pump can still move the water to and fro,in the line, the diaphragm
being stretched in one direction and the other alternately. Some work will be done by the pump
in stretching the diaphragm, but this energy is stored in the diaphragm, and is expended in moving
the water when the pressure of the pump is relaxed. To this extent therefore the diaphragm
relieves the pump of an amount of work exactly equal to that which was expended in stretching
it, and the action of the diaphragm is analogous to the presence of a condenser in an alternating
current circuit.

Capacitance in an A.C. circuit

23, Let us now suppose that a condenser of capacitance C farads is connected directly to a
source of alternating E.M.F. of peak value &. This condenser will be presumed to have no energy
losses and therefore no resistance, using the latter term in the extended sense applicable to A.C. .
theory. We have seen that the law connecting the capacitance C, the P.D., v, between its
plates, and the charge g, is ¢ = Cv, and this is applicable at all times, a change of P.D. being
accompanied by a.change of charge. If the condenser P.D. is caused by an applied voltage, the
latter will always be equal to the P.D. but acting in the opposite direction, and as a result of this
the condenser voltage is often referred to as the counter-E.M.F. of the condenser. The condenser
voltage is riot strictly an E.M.F. for by definition an E.M.F. only exists when energy of some
other form undergoes conversion into electrical energy, and in the condenser the energy due to
its charge is stored in electrical form.

When an alternating E.M.F. is applied to the condenser, thé charge introduced into the
latter will be directly proportional to the EM.F. Hence if the applied EM.F. is ¢e=& sin of
the instantaneous charge will be ¢ = C& sin wf.. The current flowing into, or out of the condenser
is the rate at which electricity enters or leaves, and is measured in coulombs per second or amperes.
This may be concisely expressed by saying that the current is the rate at which the charge is
changing, and using the notation hitherto adopted for quantities which vary with time

id‘-q v -
dt

Now ¢ = C& sin ot and from previous discussion it follows that the rate of change of the
latter will follow a cosine law, hence

i=

1 = oC & cos wt

= o€ & sin (wt + ’-2’)
and it is apparent that the charging current varies in magnitude in a similar manner to the
applied E.M.F. but leads on the latter by %radians or 90° (fig. 23). If it is desired to express the
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relationship between the E.M.F. and current in R.M.S. values, we may write I = »CE, which

may again be compared with Ohm’s law by rearrangingin the form I = E —H%E. The denominator—%

which is analogous to the resistance in the true Ohm’s law, is expressed in ohms, and is called
the capacitive reactance of the condenser, the symbol X being sometimes used when it is
unnecessary to introduce any reference to the frequency.

Condensers in series

24. Suppose that in a circuit to which is applied an EIM.F. ¢ = & sin !, we have a number

of condensers C,, C,, C,, etc., arranged in series. Then the capacitive reactance or opposition of

1

each will be — oCy lc é, respectively, and the peak value of P.D. across each will consequently
2

.

UC ‘\
\ ==
\
- Frc. 23, Caar. V.—-—EEe;;c.)? c;;ac;ta;ceﬁi; I; circuit.
be — S, 5.2 The total applied E.M.F. will be equal to the sum of the P.D’s. Hence
wCl COCZ C3 ~
1 1 . . . . . ..
&=2F (2361 + oC, + o But if C is the total effective capacitance of the circuit
&
¢ = coC
1
and therefore = C + Cz + = C

The effective capacitance of a number of condensers in series is therefore given by the reciprocal
rule, just as for inductances or resistances in parallel.

When only two condensers are placed in series a simpler formula is usually used.

1
E"E+?
1 G+
C~C,C,
.'.C-"-—-' CICZ

O
_I..
O
)
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Capacitance and resistance in series

25. Just as inductance and resistance may be found in series in an A.C. circuit, so a circuit
may contain capacitance and resistance in series. The apposition offered by the circuit will now
be of two kinds, (i) the resistance, which will limit the current without causing any phase difference
between & and ¢, and (ii) the opposition caused by the counter-E.M.F. due to the charge in the
condenser, which limits the current and also tends to cause the current to lead on the E.M.F.
by 90°. 1If a sinusoidal current is caused to flow in such a circuit the peak value of the applied
E.M.F. must be equal to the vector sum of the two P.D’s, (i) between the ends of the resistance
R, 73, and (ii) between the terminals of the condenser C, ¥°;, respectively. If the peak value of
the current is &, ¥°; = #R and 77, =;‘% , while & = /732 + 7% .

~

e

Fic. 24, Caap. V.—Effect of capacitance and resistance in series.

¥’z is in phase with &, and 7°; leads on & by 90°. The resulting phase relation between &
and of is shown by the curves and vectors of fig. 24. With the aid of the vector diagram we deduce

that
s=9 R4 (L)
= +(ac
and that & leads on & by an angle 9, \ '

1
where 6 = tan ~1 oC = —1
T (s} R
The instantaneous value of the current is therefore
= sin (w4 0)
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In R.M.S. values, again

.
Jr+ (&)

P GV I U S

2
and the expression JRZ + (EIZ‘) =A/R*4- X2 =2
is the impedance of the circuit, in chms.

_ Example 5.—A condenser of -0015 microfarads and a resistance of 20 ohms are connected
in series and an alternating EM.F. of 1-5 millivolts R.M.S. at a frequency of 10® cycles per
second is applied to the circuit. Find (i) the R.M.S. value of the resulting current (ii) the peak
P.D. at the condenser terminals and (iii) the angle of phase difference.
o=2nf=2xa X 108

1 _ L
T wC T 2z x 1068 x -0015 x 10-°

103

Xe

% =Z=108
-0139 milliamperes.
.. g
(ii) V.= >C
S P e =106 X -01965 = 2-08 millivolts.

(ii1) 6 = tan—1 %’

& = 4/21 = 1-414 x -0139 = -01965 milliamperes

j— tan—‘!- .&6

20
= tan—15-3
LS. 0=80°
l.e. & leads on & by 80°.

Inductance, capacitance and resistance in series

26. In fig. 25 is shown an alternating E.M.F. of peak value &, applied to a circuit containing
a resistance R, an inductance L, and a condenser C, in series. The alternator in this instance
has to perform three duties ; it must supply (i) a voltage equal to the D.P. across the resistance,
7’ = IR (ii) a voltage equal to the counter-E.M.F. of the inductance, 7°, = wl.$ and (iii) a

voltage equal to the counter-E.M.F. of the condenser, ¥°c = a% ‘The three components of the
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total E.M.F. &, are shown in the vector diagram, from which it will be seen that the vector 7°;
is in phase with the current, the vector 77, is 90° leading, and the vector ¥’y 90° lagging on the
vector . This must be interpreted as signifying that the vectors ¥°; and ¥°,, partly cancel each
other, the P.D. of the condenser assisting, during certain portions of each cycle, to create or
destroy the magnetic field round the inductance, while in turn the E.M.F. set up by the changing
magnetic field around the inductance assists in charging the condenser. The out-of-phase or
reactive component of the E.M.F. has only to supply the difference between the vectors #°;, and

¥7°;and will be equal to wL & — ;&C- . It may be noted that the second term of this voltage may in

Frc. 25, Cuapr. V.—Effect of resistance, inductance and capacitance in series.

some instances be larger than the first. If wL.$ is greater than i% the reactive voltage will be

positive and will lead on the current, while if -a—;'% is greater than el.$ the reactive voltage will
be negative and will lag on the current. The effective reactive voltage being denoted by ¥%,

— 2
the vector diagram shows that & = /7%:% 4+ ¥’¢® thatis, & = & J R? 4+ (wI. — a%) or in
R.M.S. values

E
JRz -+ (wL —%,)2

2
the quantity \/ R?2 + (wL — ;}(—7) is called the total impedance of the circuit.

I =

Example 6.—A condenser of -0015 microfarads, a resistance of 20 ohms and an inductance
of 25 microhenries arc’ connected in series, and an alternating E.M.F. of 1-5 millivolts R.M.8.,
at a frequency of 10° cycles per second, is applied to the circuit. Find (i) the R.M.S. value of the
current (ii) the R.M.S. voltages across the condenser and inductance respectively, and (iii) the
angle of phase difference.
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It will be noted that the circuit is the same as in example § except that an inductance has
been inserted in series.
o=2af=2ax 10¢
1
X, = — = 106 ohms
Xy = oL =2a x 10% X 25 X 10—% = 157 ohms
1

X = oL — —= = 157 — 106 = 51 ohms
wC

Z = +/R® + X2
= 4/20% + 51%

1-
7 =58 milliamperes
© = +0274 milliamperes.
In example 5§ the R.M.S. current was only -0139 milliampere. The introduction of the
inductance has caused an increase of current amounting to about 100 per cent.

(i) Vo= IXs = a_:%
= +0274 X 106 millivolts
= 2.9 millivolts
Vei=IXy = oLl
= -0274 x 157 millivolts.
= 4-3 millivolts.
Both V, and ¥V, are greater than the R.M.S. applied voltage. The total reactive voltage is
Vi — Voor 1-4 millivolts RM.S., and this is equal to the reactive component of the alternator

(iii) The total reactance is Xy, — X == 51 ohms. Since X is greater than X, the current

(i) I=

will lag on the applied E.M.F. by an angle fan— -—}I%—

X 5
A _9 o
R=29= 2%

6 = tan—! 2-55 = 69° nearly.

Effective inductance or capacitance
27. From the foregoing it will be observed that the reactive voltage I ( wl — ———) may

be either leading or lagging on the current. Now inductive reactance causes the voltage to lead,
and capacitive reactance causes it to lag. If oL — wiC— is positive, it must have the same effect

as an inductive reactance wL., where L, is the effective inductance of the components L and C

in series, and
1

or L, =L — 1

*C
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The effect of the capacitance is, in this particular instance, to reduce the apparent inductance L

by an amount This is apparent from fig. 25, for the angle of phase difference is less with

C’
the condenser in circuit than if it were absent, and the impedance is also decreased with a pro-
portional increase of current. If however the reactance oL — - is negative, the total effect

of L and C must be that of a condenser, the equivalent value of which can now be found. If the
Iatter is denoted by C,

1 1
wL_?o_C‘""— wC.
szc—1=-—é
c
orCe= i ¢

Example 7.—(i) In example 5 what is the effective inductance of the circuit ?
The effective reactance has been found to be 51 ohms.

o L, = 51
w=2xx 108
. 51 . )
S Le = 5 108 henries
51

, = & or 81 microhenries,
2n

(ii) If in example 6 the frequency is changed to 0-6 X 10 what is the effective capacitance
of the circuit ?

Instead of proceeding as above, the formula C, = 1—_—%2-I:-~5 may be used
o=2nX -6 X 108

== 377 X 108
ol = 377 X 10% X 25 X 10-¢
= 94.25
wC = 3+77 X 10% x 0015 x 10-8
= +00565
w2l C = 94-25 x -00565
= -532 ’
1 — w?l C = <468
C
e Ce = :fég
= ?1%185 microfarads

= +0032 microfarads,

It has now been shown that a circuit possessing both capacitance and inductance in addition
to its resistance, may behave at certain frequencies as though it possessed no capacitance, but
an amount of inductance smaller than that actually existent, while at other frequencies it may
behave as though it possessed no inductance, but an amount of capacitance greater than the

actual value.
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POWER MEASUREMENT IN HEAVY-CURRENT PRACTICE

28. The amount of power which is dissipated in a direct current circuit is given by the
equation P = I?2 R. 1In an A.C. circuit the power is given by an identical expression, provided
that the R.M.S. value of the current is employed, because this value is by definition the direct
current which is equivalent in heating effect to the given alternating current. 'In an A.C. circuit
possessing resistance only, the power may also be calculated from the product of R.M.S. amperes
and R.M.S. volts, because the R.M.S. voltagé is defined by means similar to those adopted for
the definition of R.M.S. current. In circuits possessing reactance, however, the product of volts
and amperes does not give the true power expended, but a quantity called the activity, apparent
power, or simply the volt-amperes. In a circuit possessing both capacitive and inductive
reactance, as well as resistance, it has been stated that the applied E.M.F. consists of three
components, namely (i) vy = ¢ R which is required to overcome the resistance, and is in phase
with the EM.F. (ii) v, = wL ¢ which oveércomes the counter-E.M.F. of self-induction. This
component may be considered ta establish the magnetic field in and around the coils constituting
the inductance. (iii) vy = :}C which is devoted to the establishment of an electric ficld between
the plates of the condenser.

No average ‘power is supplied from the source of E.M.F. in order to maintain the magnetic
and electfic fields ; the energy required to establish them is réturned to the source on their des-
truction, The voltages v, and v, are 90° out of phase with the current, and are referred

to as wattless components. The R.M.S. current is given by the equation I = g- and the power

' 2
expended in the circuit by 72 R. Hence P=% R=E % ZR = E I ¢os ¢, where ¢ is the phase
difference and may be either a leading or lagging angle.

In any A.C. circuit a hot-wire or electrostatic voltmeter connected across the supply terminals
will give the R.M.S. value of the terminal P.D., ¥, and a hot-wire ammeter in series with the
consuming device will read the R.M.S. current, . The product of these readings gives the
apparent power, V' I, and the true power is the product multiplied by cos . The numeric

0os p = > is therefore called the Power Factor of the circuit. True power may however be

measured directly by means of a wattmeter, and the Power Factor may be determined by the
relation

__ True power
"~ apparent power

cos @

__ wattmeter reading
" Product of .voltmeter and ammeter readings.

The wattmeter

29. Two principal types of wattmeter are in use, and are known as the dynamometer. and
induction types respectively. Hot-wire and electrostatic types have also'been proposed but
have not been developed into practical instruments. The dynamometer instrument is similar
in piinciple to the moving coil D.C. instrument, but contains no permanent magnet. It is shewn
diagrammatically in fig. 26. An alternating magnetic field is set up by a fixed coil carrying the
main current or a definite fraction thereof, and the strength of this field, at any instant, is
proportional to the instantaneous current. The moving coil is situated in this field, and is
connected across the supply mains with a suitable resistance in series. The current in this
coil is therefore proportional to the terminal P.D. Thus the connections of the fixed coil resemble
those of an ammeter and the connections of the moving coil those of a voltmeter. No iron is
used in the vicinity of the coils.
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The torque exerted upon the moving coil is proportional to the product of the two currents
and therefore proportional to the product of the main current and terminal P.D., that is to the

OV

O

|
G

Fic. 26, Cuar. V.—Principle of dynamometer instrument,

SO 70 8o %0
s =)
KL OWATTS

T

Fic 27, Chap. V.—Dynamometer wattmeter.
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instantaneous péwer. The moving system cannot follow the rapid changes in the latter quantity,
however, but takes up some position in which the controlling torque is equal to the mean value
of the deflecting torque, that is the mean power, V1.

The controlling torque is obtained by spiral springs which also serve as connecting leads to
the moving coil, and the movement is made deadbeat by an air damping device. The general
appearance of a typical wattmeter of this type is shown in fig. 27.

The induction wattmeter

30. In this type of instrument the moving member consists of a thin aluminium disc, which
is mounted upon a spindle, and is free to rotate through about 300° against the action of a light
spiral spring. An electromagnet is arranged on each’side of the disc, the poles of each being
opposite to a different portion. The winding of one electromagnet carries the main current or
a known fraction thereof, while the other winding is connected across the mrains and carries a
current which is proportional to the P.D. The latter winding has a series inductive resistance
which causes its current to lag by nearly 50° upon the terminal P.D. The alternating fluxes set

F1c. 28, CHAP. V.—Induction wattmeter.

up by these two magnets induce local electromotive forces in the disc, and consequently eddy
currents are set up in the latter. These eddy currents in~turn set up a flux which reacts upon
the original flux, and a torque is exerted upon the disc which is proportional to the product of
the fluxes caused by the two electromagnets and also to the sine of the engle of phase difference
between them. Thus the torque is proportional to VI sin (90° — ¢) or VI cosp. A diagrammatic
representation of this instrument is given in fig. 28. The instrument requires certain compensating
devices (not shown on this figure) in order to avoid inaccuracy in indication, because it is im-
possible to make the parallel winding so highly inductive (or slightly resistive) that the current
in it will lag by 90° on the terminal P.D.

Power measurement by voltmeter

31. When it is necessary to measure power or power factor in an A.C. circuit and a watt-
meter is not fitted, the same information can be obtained in the following manner.

In fig. 29 (S,) (S,) are the supply terminals, and Z is the device whose power or power factor
are to be measured. In series with Z is connected a noninductive resistance R such as a number
of carbon filament lamps or an electric radiator ; a hot-wire voltmeter (including of course its
series resistance) is arranged to read at will either V,, the P.D. between the terminals of the device
Z: V,, the P.D. between the terminal of the noninductive resistance R, or ¥, the P.D. between
the terminals of R and Z in series. An ammeter is connected in the supply line.
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The relation between the voltages V,, V', and ¥, can be shewn by a vector diagram, which
has been drawn beside the circuit diagram for easy reference. The vector I represents the
current ; the P.D. V, across the resistance is in phase with I, while the voltage V', across Z
leads upon I by some angle ¢. The supply voltage ¥, is the vector sum of ¥, and V,. From
the end of the vector ¥, a perpendicular to the current vector is drawn, this being shown as a
dotted line in the figure. This completes a right-angled triangle the hypoteneuse of which is
Vs By inspection we find that the two other sides of this triangle are (V, cos ¢ 4 V,) and (V,
sin ). From this information we deduce that

V3= (Vycosg + Vy)2 4 (V) sin ¢)?
Ve=Vicosg+2V,V,cosp+ Vit VisinZe

But sin2q@ -+ cos2p =1
Hence Vi=Vi4+Vei4+ 2V, V,cos9
V2T _ 2
and Vicosp = =2 21V2 2
v Vi
(D P
/s 1
S n ; e v (Vising
1 ¢ ;/ :
Vo /1 vl
Vs Vi 4 = J: —]
V] cos |
S ,
O : . Vicosg+Vo

Frc. 29, Cuap. V.—Power measurement in A.C. circuit (Three voltmeter method).

The current flowing, as shown by the ammeter, can now be introduced giving

T2 __Us
VI cos ¢ = & Z}/ Vs I
2

which is the power consumed By the device Z. As the power is deduced from the differences
between the squares of quantities, small errors in these quantities, i.e, in the voltmeter readings,
produce considerably greater errors in the value of the power. For best results the series re-
sistance should be so chosen that its value is about equal to the impedance of the device under
measurement. This necessitates a supply voltage at least 50 per cent. higher than that for
which Z is rated, while in the unlikely event of the latter being completely non-reactive, the
normal supply voltage would have to be doubled for the purposes of the measurement. This
disadvantage can be overcome by using the following method of measurement.

~ Power measurement by ammeter
32. The general principles of this method are similar to those in the preceeding. The con-
nections are shown in fig. 30 in which the device under measurement is again Z. Ammeters are
connected in each branch of the circuit, the noninductive resistance R with its meter being
placed in parallel with Z. From the vector diagram it is deduced n exactly the same manner as
before that
I — L — I
14
21,

VI, cosp=
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The disadvantage of this method is that three ammeters of identical accuracy are required,
otherwise elaborate switching arrangements are necessary in order to transfer the ammeter from
circuit to circuit. Both methods assume that the wave form is sinusoidal and inaccurate
results are obtained if this assumption is incorrect.

33. Power factor meters may be used to indicate directly the power factor of a circuit. A
typical design consists of a fixed coil which carries the main current, this coil being divided into
two halves. Pivoted in the space between these is the moving element consisting of two coils
rigidly fixed at right-angles to each other so that they move as one unit. No controlling torque
is required. One coil of the moving element in series with a noninductive resistance is connected
across the supply mains, the winding of the other being similarly connected but with a reactive
device, i.e. a condenser or inductance, in series, and consequently the former winding carries a
current which is propartional to and in phase with the voltage, while the latter winding carries
a current which is proportional to the voltage but which differs considerably in phase. It will
be considered as a lagging current in the following explanation.

O @ lcos ¢ +Io

S ’
ficos ¢
= T~ TV
® SN
R | Z : AN i\l sin ¢

SZ l [l
O

Fre. 30, Cear. V.—Power measurement it A.C, cucuit (Three ammeter method).

Suppose the main circuit to have unity power factor, then the currént in the non-inductive
branch of the moving unit will interact with the main field in such a way that its coil will set
itself parallel to the main coil so that it embraces maximum flux ; on the other hand if the lag
of current in the main coil is exactly equal to the lag of current in the inductive branch of the
moving unit, the latter will be turned until the coil embraces maximum flux, and will be parallel
to the main coil. For any intermediate angles of lag the moving unit takes up an intermediate
position in which the resultant field of the moving unit is parallel to the main field at the instant
of peak value of the latter. With a leading current in the main coil, the same arguments apply,
except that the moving coil in the inductive branch will turn in the opposite direction to that in
which it turned with a lagging main current. The pointer attached to the moving element
moves over a scale graduated up to 90° on either side of zero, thus showing the phase angle and
whether the current is leading or lagging.

Energy meters

34. Energy meters for A.C. supply are usually true watt-hour meters. The typical form is
similar in principle to the induction type of wattmeter. The chief modification is the removal of
the spiral spring constituting the controlling force of the wattmeter, so that the spindle carrying
the disc is free to rotate in its bearings, and the provision of a counting mechanism, e.g. a cyclo-
meter, instead of a pointer. This cyclometer is driven from the spindle of the disc by a worm cut
in the latter.

A retarding torque is provided by an additional permanent magnet, by which eddy currents
are induced in the revolving disc, and consequently this torque is directly proportional to the
speed, while the torque exerted by the electromagnets is proportional to the power supplied or to
VI cos 9. Hence the total number of revolutions is proportional to the watt-hours.
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Rating of alternating current machinery

35. Makers of alternating current machinery rate their products as being capable of delivering
a given number of kilo-volt-amperes instead of a given number of kilo-watts, e.g. an alternator
may be spoken of as a 200 volt, 10 kVA machine. This means that at its rated speed it will deliver
the rated voltage and is capable of delivering 10,000 volt-amperes without overheating. If
the load is purely inductive, this current will be wattless, and no power will be dissipated in the
external circuit, although the machine is giving an output of 10 kVA and the internal losses
are exactly the same as when current is delivered to a power-dissipating circuit. On the other
hand if the maker guaranteed his alternator to produce 10 kW at 200 volts irrespective of the
nature of the load, and the machine were called upon to deliver this power to a load having a

power factor of 0-5, the apparent power would be 1(()),9;)0 = 20,000 volt-amperes, and the current
would be 2%8000 100 amperes, or double the current required by a load possessing a power

factor of unity. With the reactive load the heating effect in the machine itself is obviously four
times that caused by the non-reactive load, and the machine would certainly suffer damage.

SERIES RESONANCE

36. We have seen that under certain conditions the inductive and capacitive effects in a
circuit tend to cancel each other. This cancellation is complete if the values of L, C and o are

such that oL — —u;% = 0. The counter-E.M.F. of self—inductiop, wLi, and the P.D, at the con-

denser terminals, E%’ are then equal in magnitude and opposite in phase at every instant

throughout the cycle, and the circuit will behave as if it had neither inductance nor capacitance.
The circuit is then said to be in series resonance with the frequency of the applied E.M.F.

The resonant frequency of a circuit possessing capacitance and inductance in series may be
defined as the frequency at which the total reactance is zero. F or glven values of L and C the

resonant frequency f; is found by equating oL to —IC, thus :(— °

1

O)L='—'w—c
1

2=

" =1Ic

o= —2af o fim
VIC == avie

As the reactance of a circuit to an E.M.F. at its resonant frequency is zero, the current at this
frequency must depend only upon the resistance of the circuit, and is given by the equation

_ & sin of
- R

=l

the R.M.S. value being I=

This gives an alternative definition of series resonance, i.e. the frequency at which the current has

the value - In a resonant circuit, the current and E.M.F. are in phase, and the power factor is
unity.

The term resonance is borrowed from the science of acoustics, and numerous examples occur
in all branches of physics, many being matters of everyday experience. For instance, a wine
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glass which emits 3 clear note of definite pitch when tapped sharply, will emit a similar sound if
the appropriate note is produced by a musical instrument in the vicinity. The action of the reed
type frequency meter (para. 7) depends upon this principle, the natural frequency of vibration of
one particular reed being coincident with the frequency of the current flowing through the magnet
winding.

Electrical resonance is not often met with in heavy current engineering, and when a possibility
of resonance exists it is generally suppressed by suitable variation of the circuit constants. It
will be shown that under resonant conditions the voltage across certain circuit components may
be many times the applied voltage, and in power circuits this increase of voltage would necessitate
very heavy insulation, besides leading to other complications into which it is unnecessary to
enter. In radio circuits, however, and particularly in receivers where the applied voltage is
often only of the order of a few microvolts, the phenomenon of resonance is utilised in order to
achieve effects greater than could be obtained by direct employment of the available voltage.
For this reason further discussion of resonance will be illustrated by examples of direct application
to radio-communication. The terms ‘‘ audio-frequency ” and “ radio-frequency ”’ have already
been introduced, the range included in the latter term being from 20,000 cycles per second to
several million cycles per second. It is convenient to refer to frequencies of this order in
kilocycles per second (kc/s) or megacycles per second (Mc/s), while it has also been proposed to
use the term hertz to denote one cycle per second, but this unit has not yet been adopted for service
use. In radio-frequency circuits the inductance and capacitance are invariably only small
fractions of a henry and farad respectively, and the units used are the microhenry and microfarad.

It has been shown that the resonant frequency of a circuit possessing an inductance
of L henries and a capacitance of C farads is given by the formula

1
S = 27 +/LC
It is often more convenient to use a formula giving the resonant frequency in terms of the
inductance in microhenries, and the capacitance in microfarads. This is derived as follows :—
Let L = the inductance of the circuit, in microhenries.
C == the capacitance of the circuit, in microfarads
fr = the resonant frequency of the circuit.
Since 1 henry = 10% microhenries
1 farad = 10® microfarads

1
fr a 2 .£ X £_
108 7 108
108

———————

2z /LC
When this relation is satisfied, the series circuit is said to be an accoptor circuit for the frequency f..

b—

Series resonance curves

37. Referring to the circuit shown in fig. 25, let L = 150 uH, C = 000169 uF, R =
10 ohms and the E.M.F. of the alternator to be 10 millivolts (R.M.S.). Suppose the
frequency to be variable between say 950 ke/s and 1,050 kefs. The current at any frequency
= 2% is given by the equation
N E

2 1y
y ,\/R —|-<wL-——w—c>
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bearing in mind that L denotes the inductance in henries and C the capacitance in farads. As the
frequency is varied between the given limits, the current will also vary; its value has been
calculated over the range 970 to 1,030 k¢/s, and the results plotted in fig. 31 curve (i). It will

be seen that the current reaches the value %, i.e. one milliampere, when the supply frequency is

1,000 kc/s, which is the resonant frequency. On either side of resonance, the current is less than
this, falling off rapidly at first and then more slowly. At frequencies below 1,000 kc/s the,

" | S . .
capacitive reactance — is greater than the inductive reactance wL and the current leads upon

oC
10 I..- 150" Microherries L ~ 300 Microherries
€ =-000169 Microfarads C = -0000845 Microfarads
R =10 ohms / R - 10 ohms

X =188

Curren! 1n milliamperes

1 = el 1 i o
970 580 950 1000 1010 1020 1030
Supply frequency in K.C/S

Fig. 31, Cuap. V.—Series resonance curves. Effect of ratio of inductance to capacitance.

the applied voltage, while at frequencies above 1,000 kc/s the inductive reactance is greater than
the capacitive reactance and the current lags on the applied voltage. The graph showing the
variation of current as the frequency is varied is called the resonance curve of the circuit.

Selectivity of an acceptor circuit

38. One of the principal applications of the phenomenon of electrical resonance is in the
radio receiving circuit. A distant radio transmitter sets up in a receiving aerial an alternating
E.M.F., the frequency of which is the same as that of the transmitter. More complete considera-
tion of both transmitters and receivers will be found in subsequent chapters, but for the present
it may be considered that all transmitters of equal power, situated at the same distance from the
receiver, may be expected to produce equal E.M.F.’s in the receiving aerial. (Certain qualifica-
tions of this assumption are necessary and will be found in the appropriate chapters.) The
receiving aerial circuit possesses inductance, capacitance, and resistance and may be represented
as in fig. 32, where the alternators E,, E,, E; represent induced E.M.F.’s, having frequencies
Ji» far fs respectively. These alternators therefore give the same effect in the circuit as three
different transmitters, and if f; = 990 kc/s, f, = 100 ke/s and f, = 1,020 kc/s, fig. 31 curve (i)
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shews that if E;, E, and E; are each equal to 10 millivolts, £, will produce a current of -46 milli-
ampere, E, a current of 1 milliampere and E; a current of -26 milliampere, Although the three
voltages applied to the circuit are of equal value, the one which has a frequency equal to.the
resonant frequency of the circuit will produce the largest current, and therefore the strongest
signal in the telephone receivers or loud speaker of the receiver. The inclusion of an acceptor

@ fl 990K C/S —_— 000169 Nvﬁcrofarads

10 ohms
fa 0ookcs Y -

@ f3 1020 K.QS 150 Microhenries

Frc. 32, Caap. V.—Series L/C circuit with applied E.M.F. at resonant and non-reso?ant frequencies

circuit in a piece of apparatus thus endows it with the property of discrimination irr favour of
signals (i.e. E.M.F.’s) of resonant frequency, to the partial exclusion of others.  This capability
to differentiate between signals of different frequencies is called selectivity, and the selectivity
of an acceptor circuit depends upon its ratio of inductance to resistance.

Influence of ratio %"
39, The effect of an increase in the ratio L is also shown in fig. 31. Curve (i) has already

R
b L 150
been referred to ; it is the resonance curve for a ratio ja of 0

tance has been increased to 300 uH, the capacitance being correspondingly reduced so that the

= 15. In curve (ii) the induc-

resonant frequency remains 1,000 kc/s, the ratioTItj— being 30. The three E.M.F.’s cited above

would now produce the following currents, viz: at S')QO kc/s, +23 milliampere ; at 1,000 kc/s
1 milliampere, as before, and at 1,020 ke/s <13 milliampere. With this ratio of TL{, then, the

cuirent at resonance is unchanged, but E.M.F.’s of non-resonant frequencies cause considerably
reduced currents to flow, and the selectivity is therefore increased. -

The ratio % may also be changed by a variation of resistance, instead of by variation of

inductance. Fig. 33 shows resonance curves for fixed values of inductance and capacitance
(150 pH and -000169 pF respectively) ; curve (i) representing the state of affairs when the
resistance is 10 ohms, is repeated from fig. 31 for comparison. Curve, (ii} shows the effect of
increasing the resistance to 1414 ohms and curve (iii) the effect of decreasing the resistance to
7-07 ohms. Comparing the two latter curves, it is seen that at the resonant frequency, halving
the resistance results in doubling the current, but at any other frequency the effect is not so
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marked. At 970 kc/s and at 1,030 kc/s the current is practically independent of the resistance

and depends only upon the reactance of the circuit, so that the current is the same in all three
cases.

-4

L =150 Microhennes
C =-000169 Microfarads

L =150 Microchenries
C =-000169 Microfarads

.0 R = 7-07 ohms R =10 ohms
X #134 = X * 94
£
10 6
L =150 Micro-
hermes
C =-000169 Micro-
farads
.8 R = 1414 ohms

X * 67

Current n milhamperes

970 560 390 000 100 1020 1030
Supply frequency m K /S

F1c. 33, Cuapr. V.—Series resonance curves. Effect of variation of resistance.

40. The reader must be on his guard against a common fallacy, i.e. that an increase in the

ratio % will necessarily lead to an increase in the selectivity of an acceptor circuit. This is not

true unless the increase of inductance is accompanied by an increase in the ratio % which in itself

is sufficient to cause an increase of selectivity. As an example, consider the selectivity of two
different acceptor circuits. Let R,, L,, C, be the constants of one circuit, and R,, L,, C, those
of the other, also let R, = 2R;, L, = 2L,, C, = 1C, ; the circuits then have the same resonant
frequency and the same ratio of inductance to resistance, but the ratio of inductance to capaci-
tance in the circuit R, L, C, is four times as great as in the circuit Ry L, C,. Let I; denote the
w

current at the resonant frequency 27:, and I, the current at any other frequency, -;0—;
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In the first circuit
.=E r-__E __E
T Rl: n »\/R?-'-X? Z]l
Where X1= By, l'-"wlc.
nv-i
In the second circuit
E E 1
L=2 L =————: X,= ., — .
r R, a VR§+X§ 2 Wpl.g @nCq .
2 E E
X, =2w,L, — =2X.; " I,= =,
™ VERY + @) 2

For the present purpose the selectivity may be defined as the ratio of current at resonance to
current at the non-resonant frequency, that is I—' .
n

In the first circuit
I. E E Vv R4+ X7

Rl ) Z] Rl

LE_ E . E _vR*+ X

I. 2R, " 2Z, R, ’
as I, is the current at any non-resonant frequency whatever, it is seen that although the maximum
value of the current is different, the two resonance curves will have exactly the same shape,

and the two circuits have the same selectivity, because the ratio T is the same in each
n

example.

Voltage magnification

41. It has already been shown that in a circuit possessing both capacitance and inductance
connected in series, the terminal P.D. of the coil or condenser may be greater than the applied
E.M.F. This effect is most pronounced when the frequency of the applied E.M.F. is identical
with the resonant frequency of the circuit. ILet E be the applied EIM.F. (R.M.S.) L the value
of the inductance in henries, C the capacitance of the condenser in farads, and R the resistance
of the circuit in ohms. If Vyisthe P.D. at the terminals of the coil, ¥ the P.D. at the condenser

terminals, and w, == 2z times the resonant frequency,

VL = wr L I
1
Vo = ol 1
. E 1
Since at resonance, I=3and ol = \
R o:C
VL = Vq.
2 __ _wlE E
Vi=V,Ve= —R— X aTR
_E*L
~ RXC

o.o VL

Oyl

E
Vq= _R~J
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Example 8—A coil having an inductance of 160 microhenries, a condenser having a capaci-
tance of -00025 microfarads, and a resistance of 10 ohms are placed in series with an E.M.F. of
2 volts (R.M.S.) at the resonant frequency. Find the R.M.S. voltage at the terminals of the

coil and condenser.
E |JL
Vi=Ve=7% JE

2 160 x 10—
~ 10 4/ -00025 x 10—¢

== 160 volts.

The ratio -Z.—I-‘ is called the resonance voltage magnification of the circuit, or if there is no danger

of ambiguity, the circuit Iﬁagniﬁcation. It may be denoted by the symbol y. The appropriate
values of this constant have been inserted on the curves in figs. 31 and 33. It will be seen that
a circuit having a high value of y gives a resonance curve which rises sharply as the resonant
frequency is approached while with low values of y the resonance curve tends to become flat.
From this graphic point of view it has become the practice to speak of the sharpness of resonance ;
a circuit having high z is said to be sharply resonant, and a circuit having low yx to be flatly
resonant, or flatly tuned. -

42. In practice the resistance of a radio-frequency circuit is generally an undesirable feature.
In this respect wireless circuits differ from many alternating power circuits in which the desired
effect is often the production of heat, sometimes for its own sake, as in electric radiators and
soldering irons, and sometimes because the heat is required to render a body incandescent as in
the electric lamp. The resistance of a radio circuit is often only that inherent in the coils and
condensers, and the efficiency of the coil or condenser is given by the ratio of its reactance to its
resistance. This ratio is often spoken of as the Q of the component, but as the symbol @ is used
to denote quantity of electricity, the term figure of merit will.be used to denote thisratio. ~ °

The figure of merit of an inductive coil is therefore equal to a_l)TL where % is the frequency, L the

inductance of the coil in henries ‘and R its resistance in ohms. This figure is approximately
constant over a wide frequency range owing to the fact that the h.f. resistance of a coil is roughly
|

proportional to the frequency. Thus if R, is the resistance of the coil at a frequency f; = om

and K, the resistance at a frequency f, = 2‘0—:-, R,= % R,. At the frequency f, the figure of
1

merit is 2L while at the frequency f, it is wsl and L == ol . ol
Rz Rz .(ﬂ_le
@y

R, R~

The closeness of this approximation may be illustrated by the measured values for a certain
coil, which possessed an inductance of 185 microhenries. At a frequency of 500 kc/s the figure
of merit was 120, rising to 160 over the range 800 to 1,000 kc/s. At higher frequencies the figure
of merit decreased slowly, being again 120 at 1,500 kc/s.

If an inductance is connected in series with a loss-free condenser, and an E.M.F. applied at

the resonant frequency of the circuit, the resonant voltage magnification is equal to %L ie. to

the figure of merit of the coil at this particular frequency. For this reason the term * coil
magnification ”’ is sometimes used instead of figure of merit, although this may lead to confusion.
The symbol y;, may be used to denote the figure of merit of a coil. The efficiency of a condenser may
also be expressed as a figure of merit which is the ratio of its reactance to its effective resistance,
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including in the latter all sources of energy loss. It may be denoted by the symbol z.. As the
energy losses are approximately in inverse proportion to the frequency, g, is again fairly constant
over a wide frequency range.

PARALLEL COMBINATIONS OF INDUCTANCE, CAPACITANCE AND RESISTANCE

43. In drawing the vector diagrams to show the relative magnitudes and phase difference of
current and voltage in a series circuit, the current vector is used as a datum line, because the
same current flows through every component. The resistive P.D. R & is drawn parallel to the
vector J and the reactive P.D.’s perpendicular to the current vector, lagging or leading as the case
may be. In parallel circuits the circuit components have a common termifal voltage and this
vector is taken as the datum line; a vector representing the current through'a resistance is
drawn parallel to the voltage vector, and currents through purely reactive components perpendi-
cular to the voltage vecter, lagging or leading as requisite. The rule in drawing a vector diagram
is therefore to use as a reference vector the one representing the quantity which is common to all
circuit components. In the following paragraphs the discussion will be illustrated only with
vector diagrams, although of course the corresponding sine and cosine curves could be used as in
the case of series circuits.

Resistance and inductance in parallel
44. In fig. 342 is shown an inductance L and a resistance R connected in parallel, the
inherent resistance of the inductance being negligible. An alternating E.M.F. of peak value & is

O £ b

a) .

Fic. 34, Cuar, V.—Effect of resistance and inductance in parallel.

applied to the terminals of the combination, and consequently alternating currents of the same
frequency will flow in both branches of the circuit. The current through the inductance will

have a peak value 4, = £ lagging on the applied voltage by 90°, while the current through the
P ol PP y

resistance will have the peak value 43 = g and will be in phase with the applied voltage. The
total current ¢ supplied by the alternator will be the vector sum of 4y, and &, and is shown
in the vector diagram fig. 34b, from which it is deduced that

Nome)
DNy
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and this current will lag on the applied voltage by an angle

&

-1 L o

0 = tan e9——B,1e.
tano_"g_"_ ¢ XR=£

_egn—.a_)f ? .

L
1\2 1?
In R.M.S. values, I=E (1—3) + (;z)

and the ratio E is the impedance of the parallel combination. Hence

NI,

The reciprocal of the impedance is called the admittance and is denoted by ¥. The reciprocal

of the resistance 1—;, is termed the conductance and is denoted by G, while the reciprocal of the

inductive reactance _a_;l'I',' is termed the inductive sus¢eptance, arid is denoted by By, (The symbol B

is also used for flux density, but as flux density and susceptance rarely occur in the same calculation
ithere is little risk of confusion.) The relation between E and I may therefore be written

I=YE=V G+ B E

Resistance and capacitance in parallel

45, For the inductance L in the preceeding discussion let a capacitance C be substituted,
and an EM.F, of peak value & be applied to the parallel combination, fig. 35a. As before, an

ls

T
(a) b

F1e. 35, Cwar. V.—Eflect of resistance and capacitance in parallel.

alternating current of the supply frequency will flow in each component, the peak current through
the resistance being g = R in phase with the applied E.M.F. as before. The current charging

the condenser will be #; = wCé& and will lead on the applied E.M.F. by 90°. The total current
supplied by the alternator will be the vector sum of J; and J5, and is shown in the vector diagram
fig. 35b. It will be seen that

- G
y J (%)2 + (C)?

=& G?+ B}
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and this current will lead on the applied voltage by an angle 0 = fan—1 ;‘;‘-’ = wCR. The expression

B

1\2
J (TQ + (@C)? is the admittance of the parallel combination, the capacitive susceptance
being By = wC.

Example 9.—An inductance of 100 microhenries, having negligible resistance, and a resis-

tance of 600 ohms, are placed in parallel. Find the R.M.S. current when an R.M.S. voltage
of 2 volts is applied, at a frequency of 800 kc/s.

o = 2z f = 6-28 X 800,000
oL = 6-28 X 800,000 x 100 X 10—° ohms

R = 600 ohms
E 2 _—
I, = S i -00398 amperes or 3-98 milliamperes.
E 2 -~
I, =R =500~ - 00333 amperes or 3-33 milliamperes.
I=vL+ 1§
= 4/3-33% |- 3-08?
= 5-2 milliamperes.
I is in phase with E, and I lags by 90° on E. Therefore I lags on E by an angle6 << 90°;
II- 3'98
fan 60 = I, =333 1-195
whence 6 = 50° approximately.
1
Or:— = = -001667
1
BL = E = '00199
Y=vG*+Bi
__V2-7743-95 _ 2-6
o 1,000 ~ 1,000
9.
I=YE = 1% X 2 = 0052 amperes or 5-2 milliamperes.
_B._ 600

Impedance and resistance in parallel

46. The circuit of fig. 36 shows a resistance of 2 ohms, having an inductance of 0-4
microhenries, in parallel with a purely resistive-path of 2 ohms. At very low frequencies, the

L=~4uH R=2ohms

-“WWW

R =2 ohms

Fic. 36, CHAP. V.—Inductive resistance and non-inductive resistance in parallel.
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inductive reactance is negligible and the current in each branch will be the same, for a given
terminal P.D. Suppose however that the frequency is fairly high, say 796 ke/s.  The inductive

reactance is then also 2 ohms, and the impedance of this branch becomes 4/8 ohms, so that the
current will be only -707 of that in the purely resistive branch. The disparity between the two
currents will increase with the frequency, and it may be said that where parallel paths are
available, a high frequency current will divide inversely as the inductance of the respective paths,
the resistance having negligible effect upon the current distribution.

This leads to an alternative view of the cause of skin effect. The centzge portion of the cross-
section of a conductor is surrounded by a greater number of tubes of flux that is the outer portion,
and the peak value of the rate of change of flux increases from the surface to the centre, so that
the inductance of the centre is greater than that of the outer portion. As the current divides
in inverse ratio to the inductance, it follows that less current will flow in the centre of the cross-
section than on the surface.

(4

~5 -G
Ss- 5-4% L

JC|JL (b)

Fi1c. 37, CEAP. V—A.C. circuit possessing inductance and capacitance in parallel.

Inductance and capacitance in parallel

47. It is next proposed to consider a circuit in which an inductance L and a condenser C
are placed in parallel, and an alternating E.M.F, applied to the parallel combination. In the
preliminary investigation, the effects of resistance will be neglected. It must not be supposed
however that the results obtained in this way are valueless, for in practical circuits the resistance
can often be reduced to a very small value. The circuit under consideration is shown in fig. 37a,
in which the alternator E.M.F. has a peak value &, while its frequency is variable. The peak

value of the current flowing through the inductance will be &, = —f% lagging on the applied
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voltage by 90°, while the peak value of the current charging the condenser will be 5 = wCé&,
leading on the applied voltage by 90°. The peak value of the supply current gy from the
alternator will be the vector sum of the currents through the inductance and the condenser. In
figs. 37, (b) and (c) are shown the different conditions which may obtain according to the
frequency of the supply. If 4, is greater than , the supply current J will lag on the applied
voltage by 90°, while if 9, is greater than <, the supply current will lead on the applied voltage
by 90°. It will be observed that as 4, and %, are 180° out of phase with each other, the vector

sum of these is actually their numerical difference ; this may be written Jy = | J; — Jy | the
vertical lines indicating that the numerical value of the expression is denoted. As
&
09L=a" 090=wcg,e95=l30'—e91,|,
1
. &s = é” (DC _— C—;z

If the value of wC — Z}I—, is positive, the current leads on the voltage ; if negative the current
lags.

Example 10.—An inductance of 160 microhenries and a capacitance of -0002 microfarad
are connected in parallel, the losses in both components being negligible. If an E.M.F. of 100
volts R.M.S. at 800 kcfs is applied, find the R.M.S. supply current and whether lagging or
leading.

1
oC = 6-28 X 800 x 1,000 x 0002 x 10—°

= 001005
1 10°
ol ~ 6-28 X 800 x 1,000 X 160
1
— 804
= 001245
wC — L — 001005 — 001245
wl
.= — -00024
Iy = 100 X (— -00024)
= -— -024 amperes

Since I is negative.the current lags on the voltage by 90°. The effective reactance of the
parallel combination is therefore inductive, and the value of the equivalent inductance is easily
found.

E
Xe = ‘I_;
E
Le = a"’)"’j;
E_ 100
Is - '024
= 4,160
I 4,160

I 6
° = 528 % 800 5 1,000 % 10° ()
= 830 uH
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Parallel resonance

48. In the particular case when oC = Z)lf. the current <, is equal to the current 4, and
their arithmetical difference is zero, i.e. Js= 0. The circuit will therefore take no current
whatever from the alternator, and the total effective impedance of the circuit is infinitely great.
This-condition is not possible in practice because both inductive and capacitive branches must
possess some resistance, but may be closely approached. Assuming the resistance to be absolutely
negligible, the frequency at which the supply current is zero is easily derived.

1
When oC == EL—
1
@ =7C
1
and f = =
27+/LC

This is the resonant frequency of the circuit, which is said to be a rejector for this particular
frequency. The conditions of parallel resonance are illustrated in fig. 38. Referring to the
circuit diagram, at any instant when the current in the inductance is flowing downwards, the

1¢=0
S | hfc

€ C—'\—'i 1 . -5
IC L #‘&_'_!c:ow

] VJL‘

F1c. 38, Cuap. V.—Currents in circuit of Fig. 37, at resonant frequency.

current in the capacitance, which is 180° out of phase with it, must be flowing upwards, and the
effect is that of an alternating current flowing to and fro in the closed circuit comprised by the
inductance and condenser. For this reason, the current I, = I, is often called the (R.M.S.)
circuéating current ; its value depends upon the supply voltage and upon the ratio of capacitance
to inductance.

E

Since ) IL=aandI°=wCE
I, X Iy= 1} or I}
\ .
— E _..C 2
Iano—;inCE—zE

C
SoIgpand Ip = E\/f

The current I is greater than I, when Z:IT. is greater than oC, that is at‘frequencies below

the resonant frequency. The supply current then lags by 90° on the applied voltage. On the

other hand, at frequencies above resonance, wC is greater than ;’lz and I is greater than I,

The supply current will then lead on the applied voltage by 90°.
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The effect of a small resistance in a rejector circnit
49. In practice, every circuit must contain some resistance however small, and it is now

intended to consider the effect ipon the action of a rejector circuit of a resistance R,, of the order
which would be encountered in a practical, efficient circuit. Suppose the resistance to exist

only in the inductive branch of the circuit, Remembering that y, = g—L, = fan 0, where 6, is the
L

angle of lag of 9, reference to a table of tangents shows that if y;, = 50, 4, will lag on the applied
voltage by very nearly 89°, while if y, = 100, ¢4, will lag by nearly 89-5° As the condenser
is supposed to have no losses, the current %, will lead on the applied voltage by 90°.

I

Fi1G. 39, Caapr. V.—Make-up current in rejector circuit possessing resistance.

. and I, are thus practically 180° out of phase with each other, and at any frequency
except the resonant frequency the R.M.S. value of the supply current (I,) is to all intents and

. K &
ses the difference between Iy ( = -—%) and 7, ( == ——‘.’.).
purpo L ( V2 ] V2

JiRy
2
watts, but & is not the arithmetic difference between &, and 4, pecause 4, is now practically
in phase with the applied voltage. The vector diagram fig. 39 has been drawn to explain this,
aithough the angle ¢, has been shown as much less than 89° for clearness. The value of the

At the resonant frequency the power expended in the circuit will be I} R, or
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supply current must depend upon the power expended in the circuit. ~Now this power is I3 R,
(or IX Ry because I3 = I3) therefore the power expended is I..I Ry, watts or

P—L x wCE xR,
ol

CR,
L

E?2 watts.

As the supply current is in phase with the supply voltage, the circuit as a whole must be
acting as a resistance. There is nothing new in this, for we saw that the acceptor circuit at its
resonant frequency behaved as if it contained resistance only. Now in any circuit whatever the

2
power expended may be expressed as %— where E is the R.M.S. value of the applied E.M.F. and
a

E2
R4 is the effective resistance of the circuit. The power C—f—’-‘ E? may therefore be equated to Ry

giving the effective resistance of the circuit ;

E* _ ECR,
Re L

. L

.e Rd—.C_‘RI"

The effective resistance of the rejector circuit at its resonant frequency is frequently referred to
as its dynamic resistance. The R.M.S. value, I;, of the supply current is 7, Of ~f— amperes, if

E isin volts. It must be particularly borne in mind that the greater the actual resistance of the
circuit the less is its dynamic resistance.

Resonance curves for a.rejector circuit

50. Let us now take a rejector circuit containing a small resistance, and vary the frequency
of the applied E.M.F. as was done in the study of an acceptor circuit, keeping its R.M.S. value
constant, say 10 valts. Suppose that L = 1-6 uH, C = -025 uF,and R = -064 ohms. Then as
the frequency is varied from 764 to 828 kc/s the corresponding variation of current is shown by
curve (i) of fig. 40. Such a curve is called the resonance curve of the rejector mrcmtEgIt{ will be

observed that at the resonant frequency, 796 kc/s, the current falls to a value —— =01
ampere, rising on each side of the resonant frequency. The rate at which the current increases,
as the frequency is varied above or below the resonant frequency, depends upon the ratio 5,
as in the acceptor circuit. Thuys if R remains constant, the effect of an alteration in the ratio
s shown by curves (i) and (i) Tncurve (i) Ris 064 ohms, but L = 3-2uH and C = -0125 uF,
while in curve (iii) R is -064 ohms, L = 1-13 uH, C = -0353 uF. Now it will be observed that

the current at any non-resonant frequency is greater in curve (iii) than in curve (i) or (ii) and it
is therefore often erroneously concluded that the “ selectivity ” of a rejector circuit is increased

as the ratio %15 increased. Before proceeding further, it must be pointed out that when speaking

of a circuit consisting of an inductance and condenser in parallel, the term selectivity must be
used with some caution. If the circuit is used as a true rejector, that is to suppress current at
one particular frequency, then the criterion of its “ selectivity "’ is the ratio (current passed by
the device at the desired frequency) over (current passed at an undesired frequency). In fig. 40
the undesired frequency would be 796 kc/s, while we may suppose that the desired frequency
i.e. that which is required to pass through the rejector circuit, is 780 kc/s. Then in curve (i) the
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ratio of desired (I,) to undesired, (I), currents is 5-3 to 1, whereas in curve (ii) itis = 10 to 1,
and in curve (iii) it is 3-6 to 1. The circuit corresponding to curve (ii) is thus the best of the
three circuits as a “ wave trap ” as this form of current suppressor is generally called.

Now let us study the effect of varying R, while keeping L and C constant. Suppose that we
take the original circuit, L == 1:6 uH, C = -025 uF butreduce R to -032ohms. Then the resulting
resonance curve is shown in fig. 41 curve (ii), curve (i) being repeated from the previous figure
to serve as a basis of comparison. It is again obvious that taking the ratio Ip/I:, or (current at
any non-resonant frequency) [ (current at resonant freqpency) as a criterion the selectivity of

each circuit is proportional to the ratio e The greater this ratio is, the greater the proportion of

current at non-resonant frequency to the current at resonance.

.14- -
L =113 Microhenries L = 16 Microhenries
C = ‘0353 Microfarads € = +025 Microfarads
@24\ R = 064 chms R= -064 ohms s
X #8388 xX= 125
L= 32 Microhenries
107 C = +0125 Microfarads [
g R= +064 ohms
& X+ 250
£ i
e
3 >
2 ~
N "~
3.04., \ -
N\
02 N 5
0 T T T T Y
764 780 (¢] 812 828

7
Supply frequency in K.C/S.
Fic. 40, Caap. V.-——Parallel resonance curves. Effect of ratio of inductance to capacitance,

When a rejector circuit is used in such a manner that the ratio of resonant to non-resonant
P.D. at its terminals is of major importance, the above conclusions must be modified. The
effect of any impedance which is effectively in parallel with it must be taken into consideration
and it is desirable to analyse any particular case from first principles rather than to rely on general
conclusions. An example of such an analysis is given in paragraph 64.

Circuit magnification of a rejector circuit

51. It should be obvious that a circuit consisting of L and C in parallel, whether inherent
resistance is present or not, cannot have a voltage magnification, for the voltage across the
inductance or condenser cannot be greater than the applied voltage. Instead the magnification
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takes the form of current magnincation that is, the circulating current is y times as great as the
supply current. This is easily shown as follows. The R.M.S. circulating current, is equal to

-EI-: or wC E, while the supply current I is equal to —Cflg E. The ratio I /], is therefore
[}

E . CR

LT E
£, L _ 1 _
“@L " CRE ~ oCR ~ *
L wl
or (BCEX-C—R—;F==—R—=x

and the statement that Iy =z Jyis proved. This relation can often be used to shorten work in
connection with actual radio circuits.

‘| N L =16 Microhenres L = 1-6 Microherries i
C = <025 Microfarads € = 025 Microfarads
R = +128 chms R= 064 ohms
08 X * 82:5 X # 125 -
@
%‘ L * 1-6 Microhenres
€= 025 Microfarads
508+ R* <032 ohms 2
-l 250
: X+ 2
B -
2
o
5
“2.02- -
0 . — ,
764 780 796 82 828

Supply frequency in KC/S

F1c. 41, Caar. V.—Parallel resonance curves. Effect of variation of resistance.

Rejector circuit with considerable resistance

52. Although the circumstances rarely occur in radio circuits, it is desirable from a purely
theoretical point of view to consider the conditions arising in a parallel inductance-capacitance
combination when the resistance of either or both branches is comparable in magnitude with
the reactance of the branch. ILet us assume therefore that a circuit consists of an inductance of
L henries which has a resistance of R;, ohms and a condenser of capacitance C farads, the losses
in which can be represented by a resistance of R, ohms. These being connected in parallel, an
alternating E.M.F. of peak value & volts, and of variable frequency, is applied. The current in the

oL

inductance will be 9y, = g— where Z;, = 4/ R® 4+ {wL)? and will lag by an angle ¢;, = tcm—l—R—
L L

on the applied voltage. The current charging the condenser will be &, = Zi where Zg
o)

C 71\ 1
— 2 2 ; = fan-1 i
= J R} + (w C) and will lead by an angle ¢, = tan aCRy The vector diagram of the
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resulting conditions is given in fig. 42. The supply current 4, is given by the vector sum of
;. and Jq, and is obtained by completing the parallelogram two sides of which are Jy and 4.
The diagonal through the origin is then equal to the supply current.

In order to find an algebraic expression for the supply current, in terms of the applied
E.M.F. and the circuit constants, it is necessary to resolve . and %, each into two components
in phase with, and 90° out of phase with the voltage. The components of 4, are (i) Iy, si% gy,
90° out of phase, and (ii) J;, cos ¢, in phase, with the applied EMM.F. ¢;. If any doubt is felt as
to the justification for this procedure, it may be dispelled by confirming that the vector sum of
Iy, sin @, and Iy, cos g is Jy. Now the vector sum of these is 4/(Iy cos @r)2 + (Fy, sin )2 and
since (cos a)% 4 (sin a)? where a is an angle whatever, is equal to unity, we may consider the
proposition proved. In the same way, the components of J; are (i) I, sin g0, 90° out of phase,
and (ii) &, cos @ in phase, with the voltage.

‘fC‘\

\
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/ |
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|
e cos ¢C+f[lcos¢L ¥

Fi6. 42, CraP. V.—Vector diagram showing relation between currents in rejector
circuit possessing considerable resistance.

Now consider the vector 4, representing the supply cutrent. 9 can’ also be divided into
in-phase and 90° out-of-phase components ; its out-of-phase component is equal to the difference
between oy, sin ¢, and &, sin @y, while its in-phase component is equal to the sum of &, cos ¢, and
o cos ge. It should be noted that this is true even if the circuit possesses no resistance, for in
this instance s# ¢, and sin ¢, are each equal to unity because both inductive and capacitive
currents are 90° out of phase and sin 90° = 1, while cos ¢, and cos ¢, are each equal to zero
because cos 90° = 0. Hence it may, be said that in all cases

Js = V(I sin g — I sin 9c)* + (I, 05 @, + Ie cos gc) %}
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In order to eliminate the trigonometrical terms from this equation we use the relation

. X. . X,
Siﬂ%-—“—-—"‘z— Szn(pc:?—
L (]

cos%—-IZ&‘- €08 pg = Z&]
L

Y E O g R, € Ry
J,_,J ZXZ ) (ZLXZL—I-ZCX—Z;)

-2 J (&~ (

The expression under the square root sign is the admittance of the parallel circuit. The
susceptance of the combination is

giving

XL Xc _

=z B
and the conductance is

By Bl

The supply current will be in phase w1th the supply voltage when the susceptance of the circuit
is zero. This occurs when
.XI. XO

L7y
and the frequency at which this equation is true is called the resonant frequency of the circuit.

This frequency is found by expressing ;he equation is such a way that the frequency, or o
which is 2:: times the frequency appears thus :—

< 1
ol oC
R4l B4 —r
ol . wC
R 4 o2l o:CIRE + 1
L C

R + o’lt~ &CR: + 1

@?LC:R; + L = RIC -} o2L3C
Collecting terms containing o to the left hand side.
o? (LC?Ry — L%*C) = RijC — L
RC—~L
LC*Ry — L2C

cross multiplying,

whence 0? =
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From these equations it can be seen that only in the particular case when R; = R, is the
resonant frequency equal to
1
2n \/ZE
In most circumstances however, the factor enclosed in brackets only differs from unity by
a very small fraction.

An interesting effect occurs if the numerator and denominator of the bracketed portion of
the equation both become equal to zero. The “ resonant frequency ” according to the formula

then becomes
1 /T "0
f"ﬁ}}r\/féxﬁ

Now zero is not a number but the absence of any number whatsoever, and when an

expression takes the form —g—it is said to be indeterrninate. The condition in which the resonant
frequency becomes indeterminate is whén Ry = R, = J é The circuit then behaves as if

each branch has a resistance J é— in series with its inherent resista;nce, and the two branches in

parallel then have a total joint resistance of '\/ é— ohms, no matter what the applied frequency

may be. p

This phenomenon has an analogy in the case of a transmission line which contains
inductance and capacitance distributed all along its length, its inductance per unit length being !
henries and its capacitance per unit length being ¢ farads. The line will then transmit all
" frequencies equally well if the “load’’ at the end of the transmission line consists of resistance

only, its value being equal to _ -lé ohnis.

53. Reverting to the consideration of the admittance Y, of a rejector circuit, we have
seen that
Y = 4/G® + B?
The latter expression can be considerably simplified for practical use with negligible sacrifice
of accuracy, by introducing the figures of merit, x, x¢ thus

}é, A\ wl . wl . P
- Rz
22 R 4+ oil® i (1 + —“wz.er) oL (1 4 )
1
&: oC _ oC _ wCx
% R%+'"§l_§ 1+ 02C*Rg 1+ 28
Hence = oC (1 + z?) " (1 T 7%)
and when x; and y. >>1, which is almost always the case in radio circuits, this simplifies to
BZ ol — .

wl
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Similarly Ry 1 1
L
22 R od RL a+ xzd
& 1 1
1
z R(1+ ,,CgRg) Ro (1 + )
Hence G = 1 + L
RL(1+XL Rc(l-l—xé) :
Againif. y; and x, >> 1 thls sunphﬁes to
i
Go= o A
Rl TRA
and if R, is negligible,
\G o __l___ — RL
o RIZ% o »n32

For nearly all practical purposes, then,

"\/ (wC L) (an Roxo)2

At frequencies very near to the resonant frequency, the conductance may be considered

equal to the conductance at resonance, that is —- 1 - o QB The admittance is then

e D) )

the R.M.S. supply current being found by the relation I = YE as usual.

Example 11.—A coil having an inductance of 160 microhenries and a resistance of 19 ohms
is connected in parallel with a condenser having a capacitance of -000256 microfarad and a
resistance of 1 ohm. Obtain an approximation to the admittance at the frequency corresponding
to o = 5 X 108, the current set up by an R.M.S. voltage of 100 volts, and the angle of lag or

lead.
oC = 000256 x 10-% x 5 x 10% = -00128
1 1 1
ol =5 %X 10° X 160 x 10=° — 800 — 0125
B = oG — L — 00003
ol
‘Total resistance = 20 ohms,
__€R _ -000256 X 20
G__T_..———-—lso 000032
= 4/G* + BZ

= 4/ (32 X 10-%)? + (30 x 10-%)*
= 10~% /1,024 + 500
= 43-8 X 10-% siemens (or mho)
I =YE = 43-8 x 10-% x 100
= 4,380 microamperes.
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As oC is greater than 1 the current leads on the applied voltage by an angle 6 = Zan ! B

ol G
-
B __ -00003
= “o00082 = "%
§ == 43°

VECTOR OPERATORS

54. A stage has now been reached at which the relations between current voltage and
impedance in various types of A.C. circuit can be found by the use of vector diagrams in con
junction with elementary trigonometry. It is possible to solve practically any A.C. problem
without further mathematical knowledge, but many problems are much more easily handled by
expressing the vector quantities themselves by symbols denoting not only their magnitude but
also their direction. One method which is sometimes employed in connection with impedances
is to denote the magnitude of the impedance by a symbol or by a number representing the
magnitude followed by a symbol or number representing the angle of phase difference
caused by this im ce, for example, (Z, 6) would be an impedance of magnitude Z,
causing a phase differenceof 6 radians, but as this alone would not indicate whether the
impedance caused a leading or lagging cutrent, the sign /_ is used to' denote an angle of lag,

and Y to denote an angle of lead. ThusZ /6 is equivalent to 4/R? 4 »*L%, where %—' = tan—1 6.

¥ = /REL o2L? oL _ 1. e L ".’_I‘_
690/_2_VR +mL,wl}ere 7 tan 2,butt5m 2-_cc,andesconsequently
infinite also. As wL cannot be infinite, because 4/R3 + w3L? is only 600 ohms, R must be zero,
and therefore 600 / g represents and inductive reactance of 600 ohms, A further example may
be given : let Z /8 = 800 /-5326, or 800 /30° -05326 being the radian measure of 30°.

Then +/R® + w?L3 = 800

oL , 1
and —E-—Ja»n30 =°57740r‘/§
ol 1
Rt~ 3
Rﬂ
'Y & P
wdL 3

Also  R? 4 w3L?= 6,400

R (1 + %)= 6,400

Re =20 X3 _ a0
R = 69-2 ohms,
while 0?3 = 4—’%—00= 1,600
and oL = 40 ohms.

This method of indicating the nature of an impedance of a given magnitude is frequently
employed in telephone engineering.
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55. A method which leads itself more readily to manipulation is that which introduces the
conception of a *‘ vector operator.” In order to explain this, it may be desirable to consider the
idea of a mathematical operation. When a quantity is denoted by a - &, the plus sign may be
considered to denote an operation performed upon &, for we may consider that originally there
were two groups containing a objects and & objects respectively, and an operation is performed
upon the latter group, the whole being conveyed to and possibly intermingled with the former
group so that a new group is formed, containing a number of objects equal to the sum of the
numbers in the two original groups. If instead of 2 - b, we write b -+ 2, we may consider that
the group denoted by b is stationary and that the operation of addition is performed by moving
the group @. The numerical result is of course the same in each case, and ¢ + b = b + a.

The plus sign thus indicates the operation of addition, while the minus sign when used in
arithmetic signifies the operation of subtraction, e.g. 2 — b means that from a group of & objects
a number & is taken. The minus sign is also called the negative sign, for it is also used to convey
the conception of contrariety of direction with regard to a given direction which is arbitrarily
said to be positive. The two meanings of the signs + and — rarely if ever give rise to confusion.
If a certain problem concerns objects, the equation 7 — 3 = 4, for example, indicates that the
operation of subtraction is performed upon three members of a group of seven, and the residue
will consist of four members. The expression 3 — 7 = —4 is meaningless when applied to
objects, but is intelligible when applied to distances in space if movement in a certain direction
is assumed to be positive and movement in a direction exactly opposite to this to be negative,
for the equation may then be considered- to signify that, starting from a point which may be
denoted by zero (0) an object is moved through three units of distance in the positive direction,
and afterwards through seven units in the contrary or negative direction, its final position being
four units from the original position (or origin) in the negative direction.

56. Two symbols used in conjunction with numbers may also require definition. The symbol
0 (zero) signifies the absence of any number, while the symbol oc (infinity) is used to denote a
whole series of numbers which are greater than it is possible to comprehend. It must not be
thought that the sign oc denotes a single, extremely large number. The untruth of this can be
seén by allowing oc to represent some number too great to admit of comprehension, and then
considering it to be raised to the power #, where # is a number greater than unity. The result
of this operation is a number larger than the original one, which was denoted by oc, but as it is
too large for comprehension we still denote it by oc, which. thus becomes a symbol denoting a
range of numbers and not a single number. This leads to another conception of zero, for if

infinity is defined as some number larger thar can be conceived—gc—must be some number smaller

than admits of conception, and this exceedingly small quantity Elc‘ is denoted by zero, hence the

sign 0 has a dual existence, sometimes signifying the entire absence of any number and sometimes
a quantity smaller than it is possible to imagine. We see, therefore, that many of the signs used
in ordinary arithmetic and algebra are capable of different interpretations, yet it is rare that
any confusion arises as to their meaning in any given example.

When applied to distances in space, the symbol + oc represents an infinitely large distance
in the positive direction, and — oc some infinitely large distance in the opposite direction. The
whole series of numbers from - o through zero to — oc with the exception of zero itself, are
termed real numbers. This qualification * real ” arose from the impossibility of representing
the square root of a negative quantity by a number either positive or negative, because no quantity
when multiplied by itself will give a negative quantity. Quantities like 4/—4, 4/ —b, etc., were
therefore called imaginary to distinguish them from quantities like 4/4, 4/6-28, etc., the square
root of which can be determined with an error smaller than any assignable magnitude if sufficient
decimal places are calculated. Any imaginary quantity can be expressed as the product of 4/—1
and a real quantity e.g.

VA= YD X A= v/=1 x vi=yTT x2
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The term 4/ — 1 is generally denoted in mathematical textbooks by the symbol Z, but in
electrical literature by the symbol 7 to avoid confusion with the symbol for current. The choice

of the term “ imaginary " to denote a quantity such as 4/ — 1 X 2 or 72 is unfortunate because
it may lead to the impression that no meaning can be assigned to such a quantity, whereas it will
be shown that “ 7’ may be regarded as a symbol of operation.

57. We have seen that real numbers can be represented by distances from the origin along
an arbitrary axis. Conventionally, the positive direction of this axis extends for an infinite
_ distance to the right of the origin, while the negative direction of this axis extends for an infinite
distance to the left of the origin. The multiplication of a positive quantity by — 1 can therefore
be considered as its reversal in direction, by rotation through 180° or = radians in either a clockwise
or anticlockwise direction. Again, the result of multiplying 4 4 by — b is the quantity — ab,
which can be regarded-as a multiplication of + 4 by -+ 4, giving a quantity of magnitude ab,
and a rotation through 180° as in the previous instance. A further multiplication by — 1 may
be regarded as a second rotation of 180°, so that — I X — 1 is equivalent to a single rotation of
360° or 2= radians. An operator which rotates a vector quantity in this way is termed a versor.

_ The quantity 4/ — 1 is a number which if multiplied by itself gives — 1. The application of
4/ — 1 twice in succession to the quantity & gives 4/ — 1 4/ — 1 @ or — a, and is equivalent to
a rotation of & through 180° or two right-angles. Now let us postulate an’ operator which will
effect a rotation through only one right-angle ; this operator may be termed a quadrantal versor.
For convenience we may also define a unit vector as one having unit length and lying in the
positive direction along the axis of real numbers. Then operating with the quadrantal versor
upon the unit vector twice in succession will result in turning the latter through two right angles,
which is z radians or 180°, that is two successive operations by the quadrantal versor are equivalent
to a single multiplication by — 1, or by two successive multiplications by 4/ — 1, because
v —1X 4/ —1=—1. The result of a single operation by the quadrantal versor therefore
appears to be identical with that achieved by a multiplication by the factor 4/ — 1, or 5. By
convention the positive direction of rotation is anticlockwise. If the operation denoted by j
is described as / jaying *’ the vector, we see that commencing with a unit vector, jaying the latter
once results in a rotation through 90°, jaying twice a rotation through 180°, because j X j = 52
= — 1. A further oper: tion gives j X j X 7 =7j%= — 1 X j or — 7, while a fourth gives j X
1 Xj3XJj=72X4%=—1X — 1= - 1, and the unit vector becomes a unit vector once more,
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having its original length and direction. With reference to the axis of real quantities the axis
of a quantity upon which j has operated once only, is vertically upward from the origin, while
the axis of those upon which — 4 has operated once. only is vertically downward through the
origin. This may be shown upon what is known as Argand’s diagram (fig. 43a).  The fact that
4/ — 1 appears 1o lead a dual existence, sometimes appearing merely as an imaginary number
and at others as a quadrantal versor need cause no confusion.

58. Complex numbers are those which consist of the sum of a real and imaginary number,
e.g. a + jb. If two such quantities are equal to each other, e.g.

. a-+gb=c+jd

the real parts 4 and ¢ must be equal to each other and the imaginary parts jb and jd also equal,
because it is impossible for an imaginary number to be equal to a real number by definition.

Thusifa 4 b =c¢ + jd
(@ + jb) — (@ + jb) = ¢ + jd — (a + 5b)
0O=c—a +jd—0
SLe=aandd=1>
unless ¢ — ¢ = j(d — B), i.e. a real number equal to an imaginary one, which is impossible.

A complex number can be an operator. Suppose that the number (2 4 jb) operates upon a
unit vector, which may be denoted by (1). Then (a + 7b) (1) = a (1) + 75(1). The result of the
operation is the sum of two vectors one of which is in the direction of unit vector but is a times
the magnitude of the latter, while the other is b times the magnitude of the unit vector but has
been ‘‘ jayed ” i.e. rotated through 90° in the anticlockwise direction. The magnitude of the
vector {@ 4 7b) (1) is seen from its diagrammatic representation (fig. 43b) to be 4/a? + b2,
The angle through which the vector has rotated with reference to the direction of the unit vector

1s dan 1 p When used in conjunction with vector operators it is usual to denote vector quantities

by clarendon type. The original vector operated upon may be an alternating current, e.g. I,
and the operator R + joL. Then (R + jwL) Iis a vector which may be regarded as the sum of
two vectors, viz. RI 4 jwL I the first being an E.M.F. which is in phase with the current and the
second an E.M.F. which leads on the current by 90°." The magnitude of the sum of these is

v/ R? 4 »?L® I where I is the magnitude of the current I, and the above result may be written
symbolically as
e=721
- or e = (R + jol) I
When used in this way the complex number R + jwL is called an impedance operator in order

to distinguish it from the magnitude of the impedance viz. 4/R? + w2L?, the latter often being
called simply the impedance. Some writers define R + jwL as the vector impedance and

4/R? 4 w®L? as the scalar impedance. It must be remembered however that R + jwL is not
itself a vector but a vector operator. The preceding results are often conveniently thrown into
another form in which the point hitherto denoted by 0 is regarded as the origin of a system of
polar co-ordinates,the length and direction of the vector whose magnitude is # being denoted by 7,6.
If a vector is represented by (az - 7b) (1) where (1) is a unit vector, its magnitude or size is

Vat+ bt =1, where a =7 cos 0, b = 7 sin 6,
and therefore
(a + 7B) (1) = r(cos 0 + 7 sin 6) (1)
hence the expression 7 (cos 0 4 7 sin 8) is equivalent to the operator 4 + 7b. The factor 7 in this
expression is equal to 4/a® 4~ b? and is called the modulus of 4 - 0, while the angle 6 which is

equal to fan—? - is called the argument of the complex quantity.
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59. Complex numbers can be multiplied together in the same way as ordinary numbers,
thus (a -+ 7b) (¢ + jd) = ac 4 jad + ybc + j%bd, or (since j2 = —1) (a -+ 7b) (c + jd) = (ac — bd)
+ (ad + bc). '

To divide one complex number by(another an artifice is employed, e.g. ‘:—i;—;is tound by
first expressing the denominator as a real quantity. To do this another complex number is
introduced into the equation, namely ¢ — jd, so that the quantity becomes

a + 5b % c—sd
c+jd " c~4d
¢ — jd angd ¢ + jd are called conjugate complex numbers. (¢ + jd) (¢ — jd) = ¢? — jed + jed —
7% or c? —Ffl- 4%, because —4% = 1. 9 e =9 ! d
a+3b __ ac — jad + jbc — 7%hd
c+jd c® + 4®
ac+bd | .bc—ad
=c”+d9+703+dz
=A4jB
which is a new complex number. The process of expressing the quotient of two complex quantities
as a single complex quantity in this way is known as rationalisation.

Hence

Demoivres theorem
60. We have seen that if the operator r (cos 6 -} j sin 6) operates upon a unit vector it has

an effect equal to a 4 jb if a =7 cos 0 and & = r siw 6. Similar results are obtained if the
operation is performed upon any vector, for example if

U= (cosb-+jsinf)v
where v is a vector, and u is the result of operation upon it, the vector u is equal in magnitude to
the vector v but is rotated in an anti-clockwise direction through the angle tan—1 = The inverse

operation denoted by
a

cos 0 -+ 7 sin 0

means that v is equal in magnitude to u but is rotated through the angle 6 in a clockwise
direction. Now, by the process of rationalisation

1 __¢cos 8 —jsinb
cos 6 +7sim 6 cos? 0 + sin® 6
== cos 0 — 7 sin 0, because cos? 6 + sin® @ =1
As cos 8 = cos (—6) and —sin 0 = sin (—0), cos 6 + 7 sim (—8) or cos § — 7 sin 0 is an
operator which causes clockwise rotation. Successive rotations, say of 6 and ¢, are equivalent
to a single rotation 8 4 ¢. That is to say the operation denoted by the expression

cos (0 + ¢) + 7 sin (8 + ¢) is the effect of two successive rotations, the first being
(cos 6 4 j ssn 6) and the second (cos ¢ + j sin ¢). Hence

cos (9 + @) + 7 sin (0 + &) = (cos € + 7 sin ) (cos ¢ + 7 sin ¢)
If6=¢ "

V=

cos 20+ 7 sin 2 8 = (cos 6 + f sin 8)%
and if instead of only 6 + 8, we have a sum of » rotations each equal to 6 :—
601 6-86,...etc. n times =% 8
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cosn 0 jsinmn 6= (tos 0+ 7sin 0)*. From this important theorem many useful results
can be derived, for example the addition formulae of trigonometry which are frequently used in
alternating current- theory, particularly in the consideration of modulated waves :—

cos (a + b) + 7 stn (a + b) = (cos @ + 7 stn a) (cos b + 7 sin b)
=cosacosbtjcosasinb+jsinacosh—sinasinb
Equating the real and imaginary parts
cos (@ + D) = cos a cos b — sin a sin b
sin{a+ b =cosasinb+ sinacosd
If instead of &, we write — b, in the original equation, we obtain
cos (@ — b) = cos a cos b -+ sin a sin b
sin(a—0b)=sinacosb—cosasinb
While if ¢ = &,
cos 2a + 7 sin 2a = (cos a + j sin a)*
= (cos® a + 2 stn a cos a — sin® a
Hence cos %2 =cos?a — sinta
and sin 2a = 2 stn a cos a

addilng stn 2q — sin %a (which is zero) to the right-hand side of the first of the two previous
results
cos2a =1cos 2a +stn2a —2sin2a
=1-—2smm2q
because cos®2a -+ sin%a =1
Rearranged this becomes
sm2a =13 (1 —cos2a).
a result we have already used in dealing with the average value of a sinusoidal curve over a
complete period. Reverting to a former pair of expressions,
cos (@ 4 b) — cos {@ — b) = cos a cos b — sin a sin b — cos a cos b — sin a sin b
* cos{a —b) —cos(a++b) =2stmasnbd
As a practical example of the use of these formulae, consider the expression
i =4 (1 -+ sin e,t) sin o,
where o, is 2n times ap audio-frequency f, and o, is 2z times a radio-frequency f;. In Chapter
XII it is shown that the aerial current in an R/T transmitter may be of this form.
Expanding the right-hand member

i =& [sin wd + sin ot sin w.t]

= & [sin od + % {cos (@r — wa)t — c0s (wr + wa)t}]

so that the complicated expression first given may be resolved into the sum of three sinusoidal
waves of different frequencies.

61. In order to develop still another method -of representation of a vector quantity by
algebraic symbols, we must first refer to what are termed algebraic series. The latter expression
is used to denote a number of terms each of which is related to its predecessor and successor in
a perfectly definite manner. For instance, 1, 2, 3, 4, 5, is a series, each term being formed by
adding unity to the preceding one, while 1, 2, 4, 8, etc. is a series in which each term is formed by
multiplying the preceding one by two. An example of the development of a series is found in
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the algebraic expression (4 - #)", which gives rise to what is known as the binomial series. The
binomial theorem states that, no matter what values 4, x and # possess, i.e., positive or negative,
integral or fractional, )

T L

This is easily proved when n is a small positive integer, e.g. 2, 3, or 4, by direct multiplication;

2 2-—-1

= a? 4 2ax -} x2

because a° = 1 and the fourth term of the series and all subsequent terms contain 0 dsa factor
and are therefore equal to zero.

Similarly
(@ + %) = a? + 3a®x + 3ax? -+ x?

The arrangement of the terms can be seen to follow a definite plan. Starting with 4", the powers
of a decrease by unity in each successive term until (if # is a positive integer) 4° or unity is
reached, when the series ceases. This, however, does not occur if # is fractional or negative, for
no term ever contains a9 consequently in such instances the series continues indefinitely. The
powers of x increase as the powers of 2 diminish, the first term being 4” 49 or a®, the second con-
taining #', the third x2 and so on. The numerical coefficients can easily be written, provided »
is a positive integer, by the use of the following table.

1 2 1 1a? -+ 2ab 4 152
1 3 3 1 14% -+ 3a%h - 3ab? - 188
1 4 6 4 1 1a% + 4a% -+ 6a%b% + 4ab® + 1b% etc.
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 38 35 21 7 1

It will be observed that any integer in this triangle is the sum of the two adjacent to it in the line
above, except at the ends of each line where the integer is always unity. By adding the next
line in the table for instance we may readily obtain the expansion of (@ 4 x)8

(@ + x)8 = a® 4 8a%x + 284822 4 56454% + 70a%x* - 564325 | 28428 } 7ax? }- %8
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62. Let the expression (1 + %)ﬂ be expanded by the binomial theorem. The series
obtained is

. 7 o 17-1 o _1 7_"_ o n—1 e 182 o (;l>2
n n—1 =n—2 .— 1\2
+ 1—0 2 - 3 Ol 3.(;1,) ...... etC.
_ nr—1)  nm—1)(n—2 , n(r—1) (n—2 (n—3)
=l+1+30sm vt Txoxss T IxXZx3xdnmt

_ 1—n-+ ” n)]+ ” % n
=1+1+-— 555 AT AR -

Now suppose # to become larger and larger until it is some quantity greater than is compre-

hensible, which we may denote by the sign oc. All the fractions of the form -2 , %etc., become
utterly insignificant when added to or subtracted from unity, and it may then be stated that the

limiting value of (1 + }G) , when# - oc (or when 117 ->0) is

1 1 i 1 1 .
1+1+§T+§-l+z—|+§'!+g—! .......... etc.
where 21 =1%x2,31=1 x 2 X 3 etc., 3! is called “ factorial 3", # ! “ factorial # >’ and
so on. The sign -> is read * approaches the limiting value ”.

The sum of an infinitely large number of terms of this series is 2-718281828.... which is
denoted by the greek letter &. The value of ““ & ” to five correct.decimal places can be obtained
by taking only ten terms of the series. This awkward-looking number is of great importance in
physics, being connected with all natural processes of growth or decay, for instance the voltage
to which a condenser is charged by an applied steady voltage E is

G‘EE <1——;—
¢CR

which is more conveniently written
¢
eg=F ‘“—)
‘ (1 _ ¢ CR

where e is the voltage ¢ seconds after the charge commences, C the capacitance of the condenser,
R the total resistance in series with it, and E the applied E.M.F.

Now suppose that the expression to be expanded, (that is, to be expressed as the sum of a
s :
series of terms) is (I -} }') This becomes, by employment of the binomial theorem

I\~ nx nxnx —1
(143 =14+ 224 22gE

nx(nx—1) (nx—2)
FTa

-4~
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and by sufficiently increasing #, as in the previous discussion, the terms nx — 1, nx — 2 etc.,
can be made to differ inappreciably from #x. When 5 - oc, therefore this series becomes

uz_ . %2
{(1-{—; }—G —1+x+2—-!+5-l+4—!. ....... etc.

In the above example

IR C N

............ tc.
1+ CR + 31 i
If x is a negative quantity, it can be shown in the same way that
—__ 1 P xt
[ ---1 x+2_l‘ 3!+4_1.n--'¢oc.-etc.
Thus
‘ (er
" CR_ CR) (CR)
8 CR-i— 5T T gy ettt etc.

Exponential form of cos 0 -}- j sin 6,
63 As # rotations through an angle of 6 radians are equal to a single rotation of #8 radians
cosn 8 + 7 sinn 6 = (cos 6 4 § sin 6)"

. stm O\"*
= cos™ 0(1 + 7 cos v

= cos™ 6 (1 -+ 7 tan 6)
Ifn9=q:

cos p -+ 7 sth @ == cas"%(l +jtang) '
and if # is allowed to become larger and larger without limit fan E— and r—; become more nearly
equal to each other. In the limit, tan % = '_:% and
Y - 2Y
cosp - Fsmmeg _cos"n(l +y”>
or, since the term cos* % also approaches unity as # is increased without limit

cos¢+jsin¢p=(1 +j%)”ifn—> .

~ The right hand member of this equation may be expanded by the binomial theorem, with the
following result ;

o) 2 yn\8 yon )4
cosqv+7'sin9>=l+1¢+(;¢1) +(73¢l) +(i¢z .. .etc,

Comparing the righthand member with the expansion of & it will be seen that they are of
the same form, and therefore the operator (cos ¢ -+ 7 si% @) is written in the alternative form ¢.
It can also be shown that cos  — 7 sin g is formally equivalent to &%,
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It has already been shown that
(cos 6 -} 7 sim 0) {cos @ + 7 sin @) = cos (6 + @) + 7 sin (6 4 @)

and in the exponential form this becomes #96'? = £ @+ ¢, The imaginary index therefore
enters into algebraic combination just as if it were a real number.

The four methods of expressing a vector operator are equivalent to each other, and if Z /8,

a - 4b, Z (cos 6 + § sin ), £ are applied in turn to a unit vector, the effect of the operation
is in every case to rotate the vector in the positive direction through the angle 6 and to extend

b
the magnitude of the vector to Z units, provided that a? + 52 = Z2 and 8 = fan—?! -

Example 12.—3 + 7 4 is the a 4- 7 b form of a vector operator. Express in the other forms.
The modulus of 3 + j 4 is 4/3% + 4% = 4/25 = 5
The argument, 0, is fan~t g = -927 radians approx.

3474 =5 (cos -927 + 7 sin -927)

cos 927 = -6

sin <927 = -8

8+74="5(6+78

orS5 /-927

or5 /53°7
(927}

orbe

The advantage of the form ¢4 is the manner in which it lends itself to multiplication and
division of operators. This process is simply carried out as follows :—

ifa+jb=2,¢%

¢ +jd = Z, &°
(@ + 78) (¢ + &) = Z, Z, 079
While Z, e = 7,8%is %—1 oo

2

The exponential form Z & is therefore the most convenient when multiplication or its
extensions are to be performed, while the form a - 4b is preferable when addition or subtraction
of vector operators is contemplated. For this reason it is often advisable to change from one
form to the other in the course of an analysis.

64. As an example of the simplification introduced into A.C. calculations by the employment
of the impedance operator, the selectivity of the circuit consisting of an inductance and
capacitance in parallel will now receive further consideration. In the first place, it must be
emphasised that this parallel combination (which for the sake of brevity may be referred to as a
“ rejector circuit ”, even thoygh the particular application is not that of a true rejector), is only
of practical utility when used in combination with other circuits, which may possess only resis-
tance, or may be tuned to any frequency whatever. In many instances the object of employing
the rejector circuit is to obtain maximum P.D. across its ends at a certain frequency (to which
the rejector is tuned) while the P.D. set up by currents of other frequencies is required to be a
minimum. Such a circuit is shown in fig. 44 in which e represents a source of alternating
E.M.F. of frequency f: and e. a source of alternating E.M.F. having an amplitude equal to that
of e; but with a frequency variable from O to oc, the R.M.S. values being E,, E,. In series
with the rejéctor circuit is a fixed resistance 7, and it is desired to obtain as large a P.D. as possible
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between the points A and B, at the frequency f, to which the rejector is tuned, while at any other
frequency fp the P.D. between A and B is to be as low as possible. The selectivity of this com-
bination may then be defined as the ratio

P.D between A and B at the frequency f; V.

P.D between A and B at any other frequency  V,

I
1
S

Fig. 44, Cuap. V.—Effect of external circuit upon selectivity of rejector circuit.

Referring to the diagram, the impedance operator, z, of the rejector circuit, at any requency

; is found by the rule for parallel impedances, which is identical with that for parallel resistances,
7T
provided the impedances are expressed in the form of vector operators. Denoting the impedance

operator.of the capacitive branch by 2 and that of the inductive branch by z, z. = }ch and
&y = R + ij,

~

7 = Z(; zL
Ze 1+ 2

1 .
o (R + jol)

. 1

‘ . R + joL
" joCR 41 — 2LC
The current i, due to a sinusoidal E.MM.F. e, is

e
r-+ 2z

1=

and the P.D. between Aand Bisv==zior
ze

v =
r -+ 2
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Denoting the impedance operator of the rejector at the frequency f: by z and the impedance
operator at any other frequency fu by zp

v e
T4z
Zn @
Ve =
T r 4

Since the amplitudes of ¢, and ¢, are numerically equal, however, the ratio ‘;’5

n

Vo r4 % 7+ 24

Inserting the values of z and z, and observing that at the frequency fr, 1 — &} LC = 0,

Vr 2r . Zp

R + jwr -’ r + R —l—jwnL
Vi ___joCR % joaCR 41 — wiLC
E—r_l_R—l—jer R 4 jo,L
jo:.CR joaCR + 1 — w2LC

In the practical application of a circuit of this type R is always small compared with oL
and R 4 jwl may be replaced without appreciable error by jwL.

% jor L # (jouCR + 1 — &2LC) + jwaL
V. jo- (CRr + L) JooeL

_ o [joa (CRr + L) + 7 (1 —w:LC)}

o | o (CR7 + L)

. 1
or, since LC = ~
- o

4

) b
Ve _ o {jwn (CRr + L)+ 7 (1 —-i:i;)}
@ Li

v Jor (CRr + L)
w; r (1 —_ iol::
T oo % S
o ' jw; (CRr + L)

4 (1 - ?—3
/ 14— @’
TV jea CRHT)
The second term of the right hand member of the equation may be further simplified :—

o 2 Py 2 2
t 1_? r(mr_wn) Wy = @y
' —— e—

jo CRr + 1) ot CRr+ L) jou (T + ;)

hence Yo, p wiR—- wf
=i 1
Yo @ ( 1-_ + C‘;)
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In this form it may be seen that in order to obtain high selectivity the factor — + C
must be as small as possible. Thus in some practical applications of the rejector circu1t selec-
tivity is not necessarily achieved by making —Iﬁ" large, for the product LC is fixed by the value of
the * desired ”’ frequency that is by e, hence a large value of L entails a small value of C, and
consequently a large value of (—; The effect will now be illustrated by a numerical example.

Example 13—If L = 160 uH, C = -00025 uF, R = 50 ohms, » = 5,000 ohms, find the
selectivity when w, = 5-6 X 108,

Considering the imaginary portion of (ii) only

wr == »\/LC J =5 x 10¢

3~ = (or + oq) (o — w,,)=106><10°>< ‘6 x 108
= 6-36 x 1012
@ — ol  6:36 X 1010 .
O = T = 17185 % 10
R 1 50 108
ITe=160 X 1%+ 5oozs x 5000
= 3125 X 10° + -8 X 10.
= 1-1125 x 106,
Ve _ . 14185 x 100
V. Jid1% x 108
=1—41-011.

In R.M.S. values, therefore
— JTTF @ OTI) Va

Ve == 1.
Now suppose that r is increased to 100,000 ohms. Then é becomes 4 X' 10* which is small
compared with Iz, and the latter factor will control the selectivity, giving
S = 1-135 x 108
~ 7 3125 + -08) x 10"
1 — 1-135
= J 73525
=1-—43-22
That is, V; = 4/1 4 (3-22)2 ¥V,
V:
orV-:- = 3-375.

The voltage between A and B (fig. 44) due to the non-resonant frequency is in this instance
only 29-6 per cent. of the voltage at resonance, for equal applied voltages.
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L

If the value of the ratio -é is chosen so that it is equal to Rr or in other words if CR=T

the factor (II—’2 + El’-) has its minimum value. = This may be proved mathematically or by

taking simple numerical values. It follows that if in fig. 44 » represents the total internal
resistance of a circuit which is equivalent in its effect to the generators ¢, e, specified above,
the greatest selectivity will be obtained when the dynamic resistance of the rejector circuit is
equal to the internal resistance of the equivalent generator. This is of the utmost importance
in the design of the circuits used in connection with thermionic valves both for reception and
transmission, and the above example shows the danger of making any assumption as to the
selectivity of a rejector circuit without taking into account the circuits to which the rejector

is connected.
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