\$22.50

COPY FOR OFFICIAL USE.

AIR PUBLICATION 1107 3rd Edition, Feb., 1931

A MANUAL OF

RIGGING FOR AIRCRAFT

This handbook, which deals briefly with the theory and practice of the rigging of aircraft, is issued for the information and guidance of all concerned.

By Command of the Air Council,

C. G. Bullock

AIR MINISTRY Published March, 1931:

[Crown Copyright Reserved.]

LONDON:

PRINTED AND PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE
To be purchased directly from H.M. STATIONERY OFFICE at the following addresses:
Adastral House, Kingsway, London, W.C.2; 120, George Street, Edinburgh;
York Street, Manchester; 1, St. Andrew's Crescent, Cardiff;
15, Donegall Square West, Belfast;
or through any bookseller.

1931

Price 4s. 6d. Net

22-67-0-31.

CONTENTS.			D = = =
The state of the American American			Page ii
List of tables			iii
List of illustrations			1
Introduction	T. F.		1
Chapter			
I.—Aerodynamic principles	fai		3
II.—Tools and instruments	1		15
III.—Furniture and equipment	. ·		22
IV.—Principles of construction			32
V.—Wood and composite construction	of art I	٠.	50
VI.—Metal construction	s grand		68
VII.—Assembling and truing of a stripped fusela	ge		87
VIII.—Assembling and truing and covering of pl		ntrol	94
surfaces and undercarriages	1:1	1	101
IX.—Assembling and truing up a complete tracto	or pipian	е	A. In
X.—Truing up on board ship		• • •	119
XI.—Flying boats, float planes and ship planes	••	• •	125
XII.—Bonding, screening and earth systems	• •		134
XIII.—Repairs and maintenance	* *	• •	140
XIV.—Practical information for riggers	• •	•••	157
Appendix			
I.—Method of checking centre of gravity of a	n aeropla	ine	168
II.—Thread and tapping drill sizes	• •	• •	169
III.—Possible extension of tolerances on bla	ide _, angl	es of	171
wooden airscrews		• • •	17.
LIST OF TABLES.			
Index I.—Furniture and equipment			23
II.—Sizes of adjustable trestles	· 644		28
III.—Leg lengths for adjustable trestles			28
IV.—Approximate loads for trestles			29
V.—Rigging allowances			118
VI.—Cutting lubricants, proportions		2000 2002	144
VI.—Cutting lubricants, proportions			

LIST OF ILLUSTRATIONS.

No.	Title.			Page.
1.	Diagram of forces of an aerofoil			4
2.	Lift and drag curve			6
3.	Pressure distribution curve			7
4.	Aircraft terms			8
5.	Aileron types			10
6.	Automatic slot diagram	• •		12
7.			• •	15
	Vernier			17
8.	Micrometers	• •	• •	
9.	Rigging instruments			19
10.	Adjustable level	• •	• •	20
11.	Ladders			25
12.	Miscellaneous standard equipment			26
13.	New equipment			30
14.	Sheer legs			31
15.				33
16.	Lines of stress in a drilled bar under tensio	n		35
17.	Loaded and unloaded beam			38
18.	Diagram of stress distribution in a spar			39
19.	Typical beam sections			40
20.	Loaded pin ended and fixed ended struts			41
21.	Braced strut			42
22.	Lines of action in fittings			43
23.	Single and double shear			44
24.	Laminated plate fitting			44
25.	Wiring lug attachment			45
26.	Perfect and imperfect frames			45
27.		100		46
28.	Braced frames Typical forms of bracing			46
29.	Types of internal wing bracing			47
30.	Cellule bracing	• •		48
31.	9			52
		• •		53
32.	Typical wooden plane			
33.	Wooden interplane strut fittings			54
34.	Composite plane rib attachments			55
35.	Composite wing fitting	• •		55
36.	Wooden spar details			56
37.	Hollow wood strut sections		• •	57
38.	Composite strut sections			58
39.	Typical deep section wooden rib			58
40.	Wooden fuselage			59
41.	Wooden fuselage fittings			59
42.	Wooden monocoque construction			60
43.	Composite fuselage			61
44.	Composite fuselage fittings			61
45.	Fabric lacing on fuselages			62
46.	Wiring lugs			64
47.	Wooden undercarriage			64
48.	Wooden tailskids			65
49.	Wooden tail plane and elevator			66
50.	Wooden fin and rudder			66
51.	Welded parts			72
52.	Section of metal plane			73
53.	Frise aileron	ALEDON'S		74
				-

No.	PAGETTA STAR Title. TO TRANS		Page.
54.	Automatic slot construction		74
55.	Steel spar sections and rib attachments		75
56.	Light alloy spar sections and rib attachments	J	76
57.	Metal spar end fitting	٠	77
58.	Metal spar fitting		77
59.	Typical metal fuselages—1		78
60.	Typical metal fuselages—2	71	79
61.	Typical metal fuselages—2	. Ch. •	79
62.	Built up metal struts		79
63.	Tubular strut end attachments	φ.	80
64.	Metal tailplane and elevator		81
65.	Tail adjusting gear Metal fin and rudder		81
66.	Metal fin and rudder		82
67.	Metal undercarriage with through axle		83
68.	Metal two unit or divided undercarriage Oleo legs		84
69.	Oleo legs		85
70.	Metal tail skids		86
71.	Types of braced fuselages		88
72.	Truing a fuselage		88
73.	Bracing wire attachments	4.5	93
74.	Fabric attachment by sewing		95
75.	Fabric attachments to ribs		96
76.	Truing an undercarriage		100
77.	Typical rigging diagram	(3)	101
78.	Truing a top centre section	100	104
79.	Truing a complete tractor biplane		107
80.	Measuring tail plane incidence		109
81.	Measuring tail plane incidence	500	110
82.	Control system—rudder		111
83.	Vibration preventers on bracing wires		112
84.	Truing ship plane fuselage and undercarriage		120
85.	Truing ship plane main planes		121
86.	Boat and float seaplane and amphibian	1	125
87.	Construction of a ring plated hull		128
88.	Construction of a longitudinally plated hull		129
89.	Launching chassis and beaching trolley		130
90.	Miscellaneous seaplane equipment		131
91.	Mooring and towing gear		132
92.	Boat seaplane. Jacking trestles in position		133
93.	Methods of bonding		134
94.			139
95.	Types of rivets		143
96.	Types of rivets		144
97.	Repairs to solid drawn tubes Repairs to strip steel tubes	4.	147
98.	Repairs to strip steel tubes		148
99.	Repairs to spars and ribs		149
100.	Methods of determining right angles		158
101.	Spanners and wire holders		160
102.	Telescopic trammel	1.	161
	Method of loop splicing flexible steel cables	7 40	162
103.		6.5 0	163
104.			164
105.	Rip off patches on planes Aileron stop		167
106.			
107.	Nomogram for the solution of triangles	•	167
108.	Checking C.G. of an aeroplane		168

NOTE.

Nothing in this manual is intended to overrule official instructions issued to cover any specific point.

INTRODUCTION

- 1. The tendency in scientific and mechanical matters is generally towards specialisation. In the early years of practical aviation, say 1908 or 1909, it was not usual to specialise in any particular phase of aeronautical work. It was the rule then for one man to try out his own theories by designing, building, and flying his own aircraft. Many of the pioneers did wonderful work in these combined capacities, but the system obviously could not continue. To-day, the design, construction, and piloting of aircraft are sub-divided into a large number of highly specialised tasks, with a consequent increase in efficiency. Every good rigger should realise that from the first thoughts of the theorist to the actual flying of the aircraft there is a complete chain of workers, and that the links in the chain are all interdependent. If any one of the widely different kinds of work is performed badly, or if any mistake is made, all the good work of the rest cannot set matters right. The design of the aircraft must be right, mathematically, aerodynamically, and mechanically; the construction must be sound, both in workmanship and choice of materials; the aircraft must be rigged according to the designer's intentions, and, lastly, the pilot must be capable. If any of these links in the chain should be faulty, failure, and perhaps disaster, follows.
- 2. The function of the rigger should now be more or less clear. His duties are to make the best use of the work of designer and constructor, so that the pilot may fly an aeroplane that is rigged truly and safely and in accordance with the designer's ideas. The days when a rigger had, so to speak, to finish off the designer's work are now past. In the early days of the war it was not unusual for the efficiency of the rigger to make up for minor faults in design, and many a good pilot and rigger between them obtained a better performance from an aeroplane than the designer had thought possible. On the other hand, careless or ignorant rigging has sometimes caused the loss of just that excellence of performance that would have enabled a pilot to overcome an opponent.
- 3. To-day it is no longer the rigger's function to question or alter the designer's arrangements. He must simply make certain that the relations of the various surfaces are exactly

as the designer planned, and that the various adjustments are properly made and securely locked. This does not mean that the studies of a rigger need be curtailed in any way. On the contrary, a study of the aerodynamical and mechanical sides of aviation will help him to grasp the great importance of accuracy in his adjustments and repairs, and assist him to work with sympathy and intelligence.

- 4. The rigger takes over an aircraft either assembled, if delivered by air, or dismantled, if it arrives by road or other transport. There are, in addition, many occasions on which a rigger must assemble and true up an aircraft which has been dismantled for repair or other purposes. In any case, his duty is to check very carefully the disposition of the fuselage and planes, tail and undercarriage, and other parts, and to examine, as far as possible, all wires, cables, struts, sockets, etc. He must make quite sure that the geometry of the aircraft is correct, i.e., that the undercarriage is symmetrical, the planes are symmetrical to the fuselage, and so on. Also he must watch for frayed cables, faulty wires or fork ends, loose nuts and damaged or missing split pins. The great responsibility of the work is self-evident. The pilot is more or less at the mercy of all who have been concerned with the design, construction, and erection of his aircraft, and it is not likely that the rigger, who is generally in fairly close contact with the pilot, would fail to realise his own responsibilities.
- 5. So far as Service aircraft are concerned, the duties of the rigger, and the periods between overhauls and inspections, are dealt with in Air Ministry Weekly Order 25 of 1929, as amended by subsequent orders, and in the King's Regulations and Air Council Instructions, paras. 702 and 788.

