Appendix 9

TEDDINGTON, TYPE FJC SERIES (TWO SPEED)

LIST OF CONTENTS

					1	Para.								Para.
Introduction						1	Yoke							31
Description						4	Brushgear					• • • • • • • • • • • • • • • • • • • •		32
						7	Armature							34
Electrical connection				•••		8	Electro-ma	gnetic	brake	assem	bly			35
Plug adapter						0	Operation							38
Housings						,,	Fast speed re							39
Reduction gear train							Slow speed re	•						40
Limit switches								•	011					
Centrifugal switch a	nd go	overnor	assembl	ly		19	Installation	• • • •	• • • •	• • •	•••	•••	• • • •	42
Capacitor and resist	tor as	ssembly				26	Servicing							43
Motor						29	Insulation res	istanc	e test					45

LIST OF ILLUSTRATIONS

			Fig
General view of actuator	 	 	1
Sectional view of actuator	 	 	2
Sectional view of motor	 	 	3
Circuit diagram	 	 	4

Introduction

- 1. These two-speed rotary actuators are designed for the operation of units employed on high-temperature air installations such as hot-air valves for anti-icing purposes, and cabin temperature, where variation in speed of operation is a desired function.
- **2.** This type of actuator will rotate in either direction at fast or slow speed, as selected, on operation of the control switch.
- **3.** An improved type of motor and gearbox has been introduced to give higher output and torque characteristics.

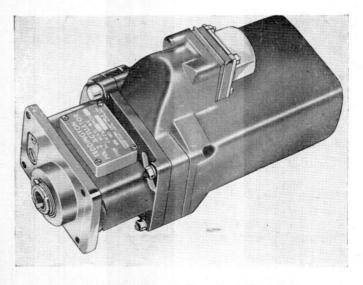


Fig. 1. General view of actuator

VIEW WITH MOTOR CASING REMOVED

Fig. 2. Sectional view of actuator

DESCRIPTION

- **4.** This type of actuator is driven through an in-line reduction gear train by a reversible, split series field, 24-volt d.c. motor, via an intermediate shaft, round which are grouped the components of a centrifugal switch assembly, which governs the speed.
- **5.** Snap action switches incorporated in the unit, limit the rotary arc of travel and an electro-magnetic brake integral with the motor, and in series with its field, virtually eliminates over-run of the output shaft when the motor is de-energized.
- **6.** The brake coil is always in circuit with the motor armature and one half of the series field, whenever the control switch is operated.

Electrical connection

7. A Breeze type plug provides the electrical connection to the motor; the position of the plug relative to the housing is dependent upon the application of the unit when installed in the aircraft.

Plug adapter

8. The plug adapter is a rectangular frame, which has a hollow-shaped pedestal cast integral with it. The Breeze plug is fitted

over a sealing gasket to this pedestal, and the leads from it pass through the pedestal to emerge from a slot internally machined in the adapter. Bonding is achieved by a split brass sleeve located in a counterbored hole in one pair of the aligned holes in the adapter and gear housing. The plug pins are specially adapted by shortening, to allow the use of rubber "O" rings over them for sealing purposes.

Housings

- 9. The actuator is completely enclosed in an aluminium alloy housing, which is sealed against the ingress of moisture, and designed to withstand a pressure differential of 20 lb. per sq. in. The housing is built in two sections, the motor and gear housing, between which is interposed a plug adapter for a Breeze type plug mounting.
- 10. The motor casing is rectangular, closed at one end, with a joint face at the open end. The gear housing is rectangular, closed at one end, and drilled to receive four 2 B.A. bolts or studs for installation purposes. Location is achieved by a spigot, machined on the end face. Internally it is machined on three offset diameters. Each section is flanged, and four clearance holes are drilled in the housing flanges and plug adapter. Through these holes pass special B.A. screws which, with nuts and spring washers, clamp together the sections. Rubber sealing rings fitted in recesses at the face of the motor casing and at one face of the plug adapter render the instrument pressure tight to 20 lb. per sq. in.
- 11. Four captive screws with eccentric heads fitting in recesses to prevent rotation, pass through the gearbox top plate from the gear assembly side, and are retained by round nuts which seat in recesses on the outer face of the plate.
- 12. The governor and brush holder housings, containing all other components of the centrifugal switch assembly, fit over these captive screws, and are held in position by the motor and suppressor assembly; these, in turn, are secured to the threaded ends of the captive screws by four 4 B.A. nuts, plain and spring washers.

Reduction gear train

13. The reduction gear train is carried on two parallel shafts on which the pinion and gear assemblies are disposed alternately.

- 14. The main shaft is supported between a bush fitted to the internal face of the top plate, and in a machined recess and blind hole in the output shaft. This shaft is carried in a flanged phosphor-bronze bush, which is housed in a mounting spigot at the rear housing closed end, and has an integral spur wheel, which meshes with the stage below pinion. Two "O" rings in annular grooves in the bore of the bush provide a seal between housing and shaft. The bush is secured at its flange to the inside of the gearbox by three csk.hd. screws. An "O" ring is also fitted between the bush and the gear housing.
- 15. Fitted to the flange of the output shaft bush is a locking pin with a slot machined diametrically across it; this slot fits over and traps a blade located in a recess in the gear housing. The blade also lies across a hole in the flange, and the intermediate or lay shaft passes through this hole, with its slotted end engaging the blade, to prevent rotation. Housed inside the output shaft and located by a dog and slot arrangement is a quill coupling which, with the shaft, is retained at the outer face of the gear housing by a circlip fitted over a spacing washer and located in an annular groove in both components. Shims and a spacing sleeve are fitted to the shafts to limit axial movement of the pinion and gear assemblies.
- 16. A switch operating rod which passes through a clearance hole in the top plate is supported between a bush fitted in the angled section of an extension arm, cast integrally with the outer face of the plate, and a similar bush fitted in a stepped portion of the internal face of the gear housing at its closed end; at this end the operating rod has pinned to it a fan-shaped trip lever, the arms of which are finished hard chromium plate. Two pins, riveted to the face of the output gear, bear on these arms at either extreme of travel, to transmit rotary movement to the rod. The other end of the operating rod carries a splinefitted butterfly-shaped plate, the arms of which are saw cut.

Limit switches

17. With their operating plungers lying directly above the grub screws, two snapaction limit switches are fitted to the extension arm and are secured by two 6 B.A. hex.hd. bolts, over spring washers, which also retain cable cleats. Two leaf springs,

secured to the extension arm by a single 6 B.A. screw, nut and tab-washer, have forked ends which locate, respectively, in grooves machined in the switch plungers, thereby biasing them in an extended position.

18. The two limit switches are so designed that after opening they will instantly close upon releasing the load on the plunger, so that only at the extremes of travel are the contacts open. Consequently, both limit switches are closed over virtually the full arc of travel, allowing control in either direction at any position between the limits.

Centrifugal switch and governor assembly

- 19. The governor housing is a rectangular, aluminium alloy frame with one closed end, on the outer face of which is a spigot locating in a recess in the gearbox top plate. At the inner face of the top plate, a hole, centrally drilled for governor shaft clearance, is counterbored to house a ball race on which the shaft rotates. A circular pot former containing a toroidal clutch coil is located by a spigot which fits in a recess on the inner face of the top plate, the coil pot being secured to the face by three 6 B.A. ch.hd. screws and spring washers, which engage, through the housing, with tapped holes in the spigot.
- 20. The governor shaft is gear-cut at one end and engages, through the gearbox top plate, with the first stage reduction gear. It carries the governor assembly and a former of mild steel coated with copper, which rotates inside the clutch coil to form a solenoid core. This former is secured to the governor shaft by two grub screws, has one end flanged, and the other end machined, to produce a spigot which fits inside the shaft clearance hole in the coil pot, thus forming a bearing for the shaft.
- 21. The governor assembly is made up of two circular synthetic resin bonded paper plates, friction mounted on the larger diameter of a stainless steel hub machined on two diameters. The hub is mounted to the shaft over two identical ball races, side by side, and located axially by a circlip which fits in an annular groove machined in the shaft. The plates are separated by four spacing bars and clamped together by 8 B.A. csk.hd. screws, which thread into holes drilled and tapped in the bars; these bars also act as limit stops for four governor bob weights fitted between the plates, and secured by rivets through their pivot points.

- 22. The weights are in pairs, each pair being biased in a contracted position by a spring blade, the tension of which can be adjusted by a ch.hd. screw which passes through a tapped hole in a pillar riveted to one of the plates. Arched leaf springs through which they pass lock the screws. Each weight has a hole drilled and tapped through it to house a tungsten-tipped contact screw, so arranged that two closed pairs of contacts are formed when the weights are in the contracted posi-Two semi-circular copper segments, separated from each other by a narrow gap, are riveted to the outer surface of the plate, remote from the gearboxes, and each segment is connected to one bob weight in each pair by copper-braided wire, which is held clamped in a slot in each weight by a ch.hd. screw and washer.
- 23. Between the other plate and the solenoid core is a circular armature, free to move axially, but prevented from radial movement relative to the governor assembly by the heads of the two 8 B.A. ch.hd. screws which thread into the plate after passing through clearance holes in the solenoid armature. The central hole in the armature is a clearance fit over the lesser diameter of the hub, and is held against the governor plate by a circular dished spring which is retained by a circlip located in an annular groove machined in the hub.
- **24.** The motor end of the governor shaft is turned on a larger diameter, and is bored to take a quill which drives through a dog and slot arrangement.
- 25. At the open end of the governor housing, and of similar outline to it, is fitted a brush holder assembly located by means of a spigot. The brush holder is recessed on its outer side. and its centre is cut away. A circular synthetic resin bonded paper plate fits inside the recess and is secured by four 8 B.A. ch.hd. screws, over spring and plain washers, threaded into tapped holes in the brush holder. The plate carries two hollow tube brush housings with drilled and tapped flanges through which pass 6 B.A. ch.hd. screws over plain washers for securing purposes. The pigtails of the round carbon brushes are soldered to terminal tags with spiral springs for tensioning. The brushes and springs fit inside the hollow housings, and the terminal tags are secured over the shanks of the housing retaining screws by nuts and spring washers. The brushes bear on the segments riveted to the governor plate.

Capacitor and resistor assembly

26. This assembly is supported on two angled aluminium alloy strips which are attached at the angled ends to an aluminium alloy strut by two 8 B.A. ch.hd. screws, nuts, spring washers and plain washers. The strut is secured to the end plate of the motor by utilising one of the motor ball race cover plate screws. The other ends of the strips have spacing tubes riveted to them, and through these pass two of the long screws which extend from the gearbox. Two 4 B.A. nuts, plain and spring washers, retain the strips on the screws.

27. The capacitor is totally encased in Araldite casting resin "B" from which protrudes two 6 B.A. bolts for connection and mounting purposes. Over these fits a Mycalex rectangular plate on which is wound the required length of Eureka wire terminating in tags which also fit over the bolts. Two 6 B.A. nuts and spring washers secure the whole together. The Mycalex plate has rectangular spigots projecting at each end, and these fit into slots in the mounting strips (para. 22), thus holding the capacitor and resistor in position.

28. Adjacent to this assembly is a plate, similarly mounted between the strips, and

this carries a 6 B.A. screw, nut, plain and spring washers for connection purposes.

Motor

29. The motor is designed for operation from a 24-volt d.c. supply, and has split series field windings for reversible operation. The drive end incorporates an electro-magnetic brake mechanism, the coil of which is in series with the armature. Braking action is thus automatically applied to the armature when the motor is de-energized.

30. The motor comprises four main units, the brake housing with mounting flange integral and brake components, the yoke which carries the field system, the brushgear housing and brush gear, and the armature assembly. The armature is supported by ball bearings located in the brushgear and brake housings. The drive-end bearing is located within the web of the brake housing and held in position by a retaining plate. A 0.005 in. shim is interposed between the outer race and the housing, and end-play is taken up by shims between the gearing and its retaining plate. The commutator-end bearing is located in the web of the brushgear housing.

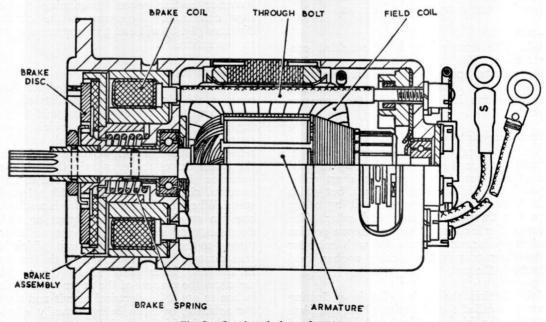


Fig. 3. Sectional view of motor

Yoke

31. The pole-pieces are integral with the yoke, the whole being built up from suitable stampings, and the two through bolts which are integral with the brake coil assembly pass within the yoke assembly and between the field coils; these coils encircle the pole-pieces and are held against the interior of the yoke by wedges passing through the pole-pieces.

Brushgear

- 32. The brushgear housing locates on the yoke assembly in like manner to the brake housings; the former housing encloses the brushgear carrier. The two brush holders are secured to a moulded annulus. insulating washer lies between the carrier and the housing web; the carrier is secured to the web by two screws which thread into nutplates. These plates are restrained within projections on the moulding so that the annulus may be rotated through an arc, in order to obtain the required commutating position. A second hole in the nut-plates, and two corresponding holes in the housing, permit the two long studs of the brake coil assembly to protrude beyond the housing. Nuts threaded on to these secure the two housings and yoke together.
- **33.** The carbon brushes are a loose fit in machined brass holders, and held under a pressure of $3\frac{1}{2}$ to $4\frac{1}{2}$ oz. by means of clocktype springs and levers. Bushes on the brush carrier protrude through slots in the housing and carry terminal screws.

Armature

34. The commutator is of moulded construction. The shaft journals are ground to close limits, and the bearings are selectively assembled to obtain the necessary fit. The drive pinion is integral with the armature shaft.

Electro-magnetic brake assembly

- **35.** The brake disc is secured against its driving pin on the armature shaft by a special nut; this nut threads on to a short collar which is a sliding fit on the shaft, but which is prevented from moving on it by a pin passing through both shaft and collar. The brake disc is counterbored to accept a portion of the collar, and is provided with holes for the outer tabs of the locking washer, held beneath the nut.
- **36.** Behind the brake disc is a floating annulus called the attraction plate; this plate carries the friction lining, and is restrained

against the rotation by two projecting lugs at its periphery, which pass into corresponding slots in the brake housing. The inner diameter of the attraction plate is such that it clears the armature shaft, and it is located axially between the brake disc attached to the armature shaft and the brake coil assembly, enclosed within the brake housing.

37. A coil spring, embracing the armature shaft and co-axial with it, butts against the bearing housing at one end, and the attraction plate at the other, thus forcing the latter into contact with the brake disc. The brake is housed in an annulus of "U" section, and is held by two long diametrically opposed studs against the web of the brake housing. "U" shaped brake adjustment shims are interposed between brake coil housing and web, in order to obtain the required brake clearance. Upon energizing the motor, the annulus is attracted to the brake coil housing, and clear of the brake disc, against the action of the brake coil spring. The armature is then free to rotate. On deenergizing the motor the loaded brake coil spring forces the annulus against the brake disc, and the machine stops with a minimum of over-run.

OPERATION

38. The actuator is designed to operate at two speeds, i.e., fast or slow in either direction. Actual speeds of operation are determined by the choice of gear ratios and the governor setting when functioning under slow conditions. Reference to the circuit diagram (fig. 3) will assist in appreciation of the operation.

Fast speed regulation

39. When the actuator is selected for fast running, the electrical circuit consists of the motor armature and appropriate field winding, the electro-magnetic brake which when energized releases the friction pad, and the relevant limit switch. Under these conditions the motor drives the gear train through the governor shaft; the governor is not in the electrical circuit, or rotating, at this selected speed. When the limit of operation is reached, one pin on the output gear bears on, and depresses, one side of the fan-shaped lever pinned to the switch-operating rod, which is thus rotated. As a result, one of the screws in the trip lever plate at its other end depresses the plunger of the appropriate limit switch to open the electrical circuit and stop the actuator, over-run being virtually eliminated by the friction brake.

Slow speed regulation

.

40. When the actuator is selected for slow running, the motor drives the reduction gear train through the governor shaft, clutch coil, and the governor contacts; the contacts being shunted by a capacitor and resistance for suppression purposes. The clutch coil, being now energized, pulls the armature attached to the governor assembly, until it bears against the flange of the solenoid former, which is grub-screw located on the governor shaft, causing the armature to rotate, and with it the governor assembly.

41. When the desired speed of operation is attained, the governor bob weights, under the influence of centrifugal force, overcome the bow spring load, and open the tungsten contacts integral with them, thus bringing into the electrical circuit the shunt resistance which causes the motor to reduce speed. With the resultant drop in speed the weights

draw in again to close the contacts and reenergize the motor. By continuous functioning in this manner, the required speed regulation is obtained.

INSTALLATION

42. The actuator is mounted on four 2 B.A. studs which pass through clearance holes drilled in the gear housing mounting flange, and is located by the spigot machined on the mounting face. Before actual mounting to the valve to be controlled is effected, it is most important to check that the arc of rotation of the actuator is identical in sense and direction to that of he unit to which it is to be coupled.

SERVICING

43. The actuator should be subjected to such functional tests as can be conveniently carried out within the aircraft maintenance cycle, to ensure positive operation and security of the Breeze plug.

44. Information on the removal of the actuator from the aircraft, and its subsequent servicing, will be found in the appropriate aircraft handbook.

Insulation resistance test

45. With an insulation resistance tester measure the insulation resistance between the two field leads and earth; this test can be effected at the Breeze plug, whilst still installed in the aircraft. The insulation resistance must not be less than 50,000 ohms.

Note

If this actuator is used in conjunction with a relay, it is emphasized that relay Type S3 is not suitable. Relay Type Q3 must be used.

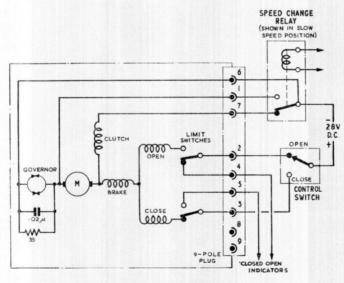


Fig. 4 Circuit diagram