Appendix 7

ACTUATOR, WESTERN, IN-LINE, TYPE EJ SERIES

LIST OF CONTENTS

				F	ara.						Para
Introduction			 	 	1	Operation			 	 	9
Description					2	Installatio	n		 	 	11
Motor					4	Servicing					12
Brake			 	 	5	Scrricing			 	 	12
Gear train and	pis	ton	 	 	6	Brushes			 	 	13
End fittings			 	 	7	Testing			 	 	14
Limit switches				 	8	Insulation re	esistan	ce test	 	 	15

LIST OF ILLUSTRATIONS

			Fig
General view of actuator	 	 	1
Sectional view of actuatar	 	 	2

Introduction

1. Western linear actuators of the EJ series are used to provide a thrust or pull for situations requiring a linear movement under remote control. The different situations necessitate some variations of actuator mounting, length of stroke and time of stroke at nominal

load. Details of variants in this series are given in A.P.4343D, Vol. 1, Book 3, Sect. 14.

DESCRIPTION

2. The actuator consists basically of a fractional horse-power motor, epicyclic gearing and worm-operated piston (fig. 2). It is con-

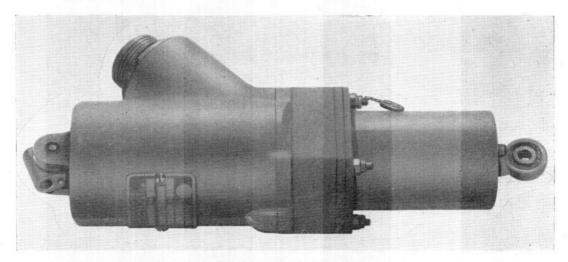


Fig. 1. General view of actuator

structed with the motor axis coincident with the axis of the piston, the gearing coming between piston and motor. The assembly as a whole is sealed against the ingress of dust, oil, moisture, etc.

3. Internal electrical wiring is brought out to a 3-pole Breeze plug mounted on the inclined inlet of the housing. The circuit diagram for each type in this series will be found in the appropriate chapter of A.P.4343D, Vol. 1, Book 3, Sect. 14.

Motor

4. The motor is a reversible series split field type and operates from a d.c. supply ranging from 25 to 29 volts. Only one pole winding is energized at any one time dependent upon the direction of rotation selected. It is encased in a cylindrical housing and is secured between two end plates by tie rods. These end plates house the ball races in which the armature rotates and the rear end plate also forms a housing for the brake coil. The brush gear is mounted on the inner face of the rear end plate; the brushes are high altitude electrographitic type with adjustable spring pressures. The complete brush assembly can be rocked radially to equalize speeds in both directions of rotation.

Brake

5. The brake comprises a spring-loaded brake shoe with a friction lining on one face. The lined face is adjacent to the face of the brake disc which is fixed to the armature shaft. The brake shoe can only move longitudinally and the brake disc rotates with the

shaft. Operation of the brake is controlled by the brake solenoid which is connected in series with the armature and field windings.

Gear train and piston

6. Bolted to the motor end cap is the multistage epicyclic gear train contained within an annulus. The worm shaft rotates in a ball race and engages directly into the internally screwed shank of the piston. Two ears integral with the piston engage in longitudinal slots in the housing and restrict the piston to a linear motion. The total reduction ratio for each type in this series will be found in the appropriate chapter of A.P.4343D, Vol. 1, Book 3, Sect. 14.

End fittings

7. The actuator is secured at the fixed end by means of a bolt passing through two fixed lugs integral with the motor housing. Moving end fixings depend upon individual requirements and details will be found in the appropriate chapter of A.P.4343D, Vol. 1, Book 3, Sect. 14.

Limit switches

8. Two snap action limit switches are fitted on opposite sides inside the housing and are operated by an ear integral with the piston. Switching of the actuator takes place at the fully extended and fully retracted positions of the piston.

OPERATION

9. The motor is of conventional design and has its rotary output transmitted and translated into a linear motion by the epicyclic

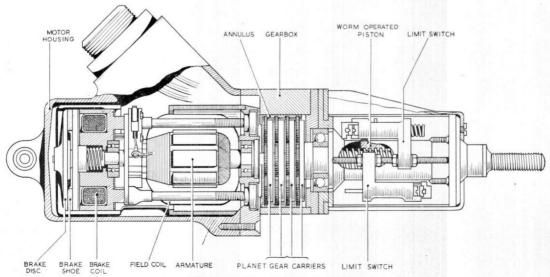


Fig. 2. Sectional view of actuator

gear train driving a worm-operated piston. The worm extends and retracts the piston, the latter being located at one end of the actuator. Two limit switches break the motor circuit and control the limits of the piston at each end of its travel.

10. On breaking the motor circuit, overrun of the armature is prevented by a magnetic brake. The brake solenoid is energized by the motor supply and holds the spring-loaded brake shoe away from the braking disc fixed to the armature shaft. As soon as the supply is discontinued, however, the brake shoe springs back and engages the brake disc, thus limiting the shaft overrun.

INSTALLATION

11. Installation of the actuators in the aircraft may be anywhere and in any position subject to an ambient temperature range of -60 to +90 deg. C. For details of individual installations, reference should be made to the appropriate Aircraft Handbook. Installation drawing of any particular type of actuator of this design is contained in A.P.4343D, Vol. 1, Book 3, Sect. 14.

SERVICING

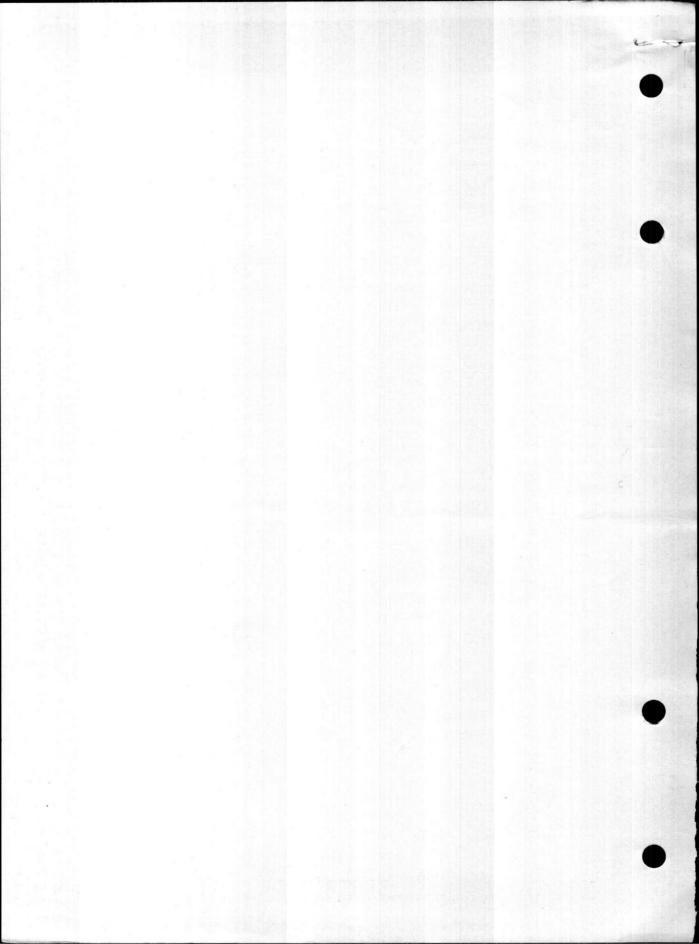
12. Ensure that all external nuts, screws and locking devices are secure. Examine the electrical connections to the actuator for security and freedom from damage. These actuators are lubricated during manufacture

and should require no further attention between the appropriate overhaul periods.

Brushes

13. Motor servicing is normally restricted to brush inspection. Brushes should be examined for signs of wear and excessive sparking. In all cases brushes should be renewed before they are unduly worn.

Testing


14. A functional test should be performed by connecting the actuator to a 28-volt d.c. supply and applying various test loads. The maximum current consumption and the time the piston takes to complete its travel for a given load should not exceed the values given for individual actuators in the appropriate chapters of A.P.4343D, Vol. 1, Book, 3, Sect. 14.

Insulation resistance test

15. The insulation resistance should be measured with a 250-volt insulation resistance tester. This should be accomplished by testing between each terminal of the connector plug in turn and the actuator body. If a reading of less than 2 megohms is obtained the actuator will be unfit for service.

Note . . .

Due to the humid conditions prevalent in the aircraft, when in service, the permissible insulation resistance allowed may be reduced to 50,000 ohms.

