Chapter 2

A.C. VOLTAGE REGULATORS

LIST OF CONTENTS

			H	Para.					P	ara
Introduction	 	 		1	Rectifiers			 	 	5
Description	 	 		2	Instruments					
Servicing	 	 		4	Final voltage	adju	stment	 	 	7

LIST OF TABLES

			7	able
Data for a.c. voltage reg	ulators	 		1
Data for carbon piles		 		2

LIST OF ILLUSTRATIONS

		Fi	ig.		Fig.
Sectional view of typical voltage regulato	r		1	View of under side of regulator with trimmer	 3
Typical circuit diagram		:	2	Typical test circuit diagram	 4

Introduction

1. This chapter gives general information on a.c. carbon pile voltage regulators. For detailed information on individual regulators, and full instructions for testing, reference should be made to the relevant chapter in A.P.4343B, Vol. 1.

DESCRIPTION

2. A.C. voltage regulators are used to control the output voltage of rotary inverters and a.c. generators. In general construction (fig. 1) and principle of operation they are similar to the d.c. carbon pile regulators described in Chap. 1 of this Section, but, as can be seen in the typical circuit diagram in fig. 2, the current for the operating coil is obtained through a full-wave rectifier which is connected across the output of the a.c. generator.

3. The rectifier, which is the selenium type, is housed under the base (fig. 3), together with the ballast and trimmer resistors. The ballast resistor is a pre-set resistor, set during manufacture to give the correct coil current; fine voltage adjustment is made by means of the trimmer resistor. Heat from the rectifier and ballast resistor is dissipated through holes in the side of the base.

SERVICING

4. The information on servicing given in Chap. 1 of this Section is in general equally applicable to a.c. carbon pile regulators. The nominal voltage setting for various a.c. regulators, together with other information, is shown in Table 1; Table 2 gives details of carbon piles for each type. In addition the following points should be noted.

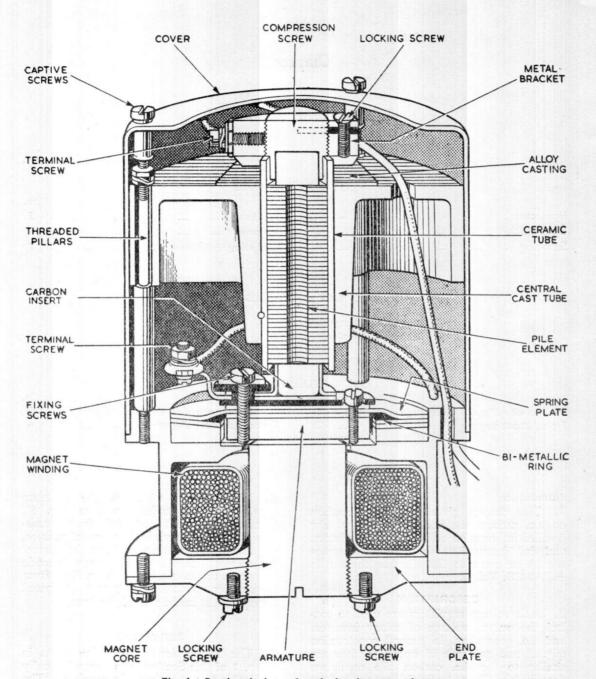


Fig. 1. Sectional view of typical voltage regulator

TABLE 1
Data for a.c. voltage regulators

	Regulator Type	Stores Ref.	Voltage (nominal)	Pile range (ohms)	Coil current (amp.) at nominal voltage at room temperature	
	E2	5UC/410	80 (mean)	5—90	0 · 14 — 0 · 155	
	E3	5UC/364	80 (mean)	3-35	0.14 - 0.155	
	E11	5UC/2966	80 (mean)	460	0.14 - 0.155	
	EU	5UC/2544	80 (mean)	5—90	0.15 - 0.165	
	EU2	5UC/3886	80	5-90	0.31 - 0.34	
	26	5UC/2491	80	1—25	0.35 - 0.385	
	46	5UC/4625	115	$0 \cdot 2 - 1 \cdot 8$	0.041 - 0.051	
	50	5UC/5212	115	1—15	$0 \cdot 21 - 0 \cdot 23$	
	54	5UC/4952	115	$0 \cdot 2 - 1 \cdot 8$	0.041 - 0.051	
	69	5UC/6009	230	0.2 - 3	0.045 - 0.050	
	93	5UC/6006	115	2-32	0.160 - 0.176	
4	97	5UC/6043	115	2-32	0.12 - 0.13	
•	108	5UC/6274	115	$2 \cdot 2 - 34 \cdot 5$	0.115 - 0.125	

TABLE 2
Data for carbon piles

R	Regulator Type	Stores Ref. of pile	Pile length (in.)	No. of washers	* Dimensions of washers (mm.)
	E2	5UC/1021	1.5	76 (min.)	$10.9 \times 5 \times 0.5$
	E3	5UC/365	1.5	38 (min.)	$10.9 \times 5 \times 1$
	E11	5UC/3366	1.5	26) (:	$\int 10.9 \times 5 \times 0.5$
				26 (interleaved)	$10.9 \times 5 \times 1$
	EU	5UC/1021	1.5	76 (min.)	$10.9 \times 5 \times 0.5$
	EU2	5UC/1021	1.5	76 (min.)	$10.9 \times 5 \times 0.5$
	26	5UC/3279	1.875	47 (min.)	$17.9 \times 5 \times 1$
	46	5UC/2162	1.5	13 (exact)	$10.9 \times 5 \times 3$
	50	5UC/	4	50)	$\int 17.9 \times 5 \times 0.5$
				26 (interleaved)	$17.9 \times 5 \times 3$
	54	5UC/2162	1.5	13 (exact)	$10.9 \times 5 \times 3$
	69	5UC/	4	• 34	$17.9 \times 5 \times 3$
4	93	5UC/	1.5	38	$10.9 \times 5 \times 1$
,	97	5UC/	2	50	$10.9 \times 5 \times 1$
1	108	5UC/	2	2)	$\int 10.9 \times 5 \times 3$
				44 }	$10.9 \times 5 \times 1$

^{*} Outside diameter \times inside diameter \times thickness.

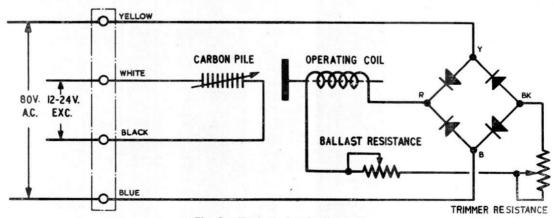


Fig. 2. Typical circuit diagram

Rectifiers

5. If the regulator has been in use for a number of years, it is possible that the forward resistance of the rectifier will have increased, thereby causing a proportional increase in controlled voltage. In this case it will be necessary to reduce the value of the ballast resistor in order to lower the controlled voltage to the required level. The voltage must not be reduced by turning the core "in" as this will result in a low coil current. An ammeter should be connected in the coil circuit, and if then the coil current is found to be below the specified figure, even though the ballast resistance be reduced to zero, a new rectifier must be fitted.

Instruments

6. It will be noted that in Table 1, the nominal voltage of certain Type E regulators has been shown as a mean, or rectified voltage. For these regulators the voltmeter used must be of the rectifier type, such as a testmeter, Type D (Stores Ref. 10S/10610). For other regulators, a thermal type instrument

of industrial accuracy, reading R.M.S. volts, must be used, or alternatively a moving iron instrument, calibrated to the required frequency. Great care should be taken to ensure that the instrument is reading correctly; it should be checked periodically against a substandard meter which is known to be accurately calibrated.

Final voltage adjustment

- 7. A typical test circuit diagram is given in fig. 4. The level of the voltage in the dip position should be 80 volts ± 4 volts, 115 volts ± 4 volts, or 230 volts ± 8 volts, as appropriate. If the dip voltage is outside these limits, the line voltage must be adjusted as necessary by the magnet core, and the dip adjustment repeated until the dip is obtained within the stated limits.
- **8.** After adjustment, the regulator should be tested for regulation and stability, as laid down in the relevant chapter in A.P.4343B, Vol. 1.

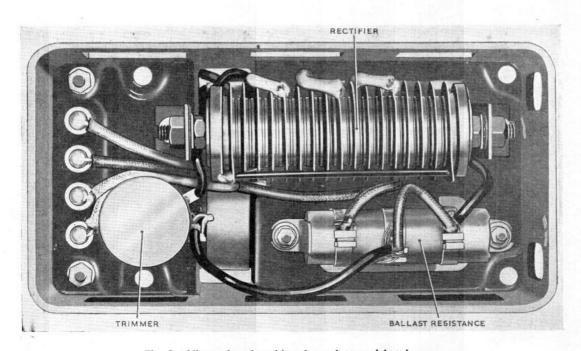


Fig. 3. View of under side of regulator with trimmer

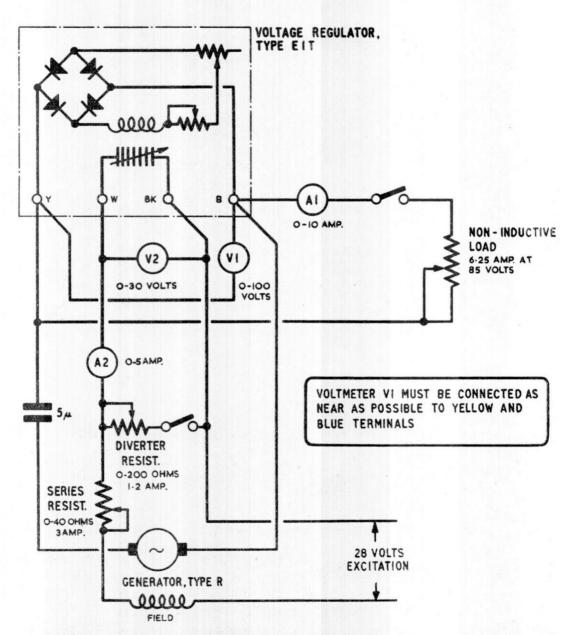
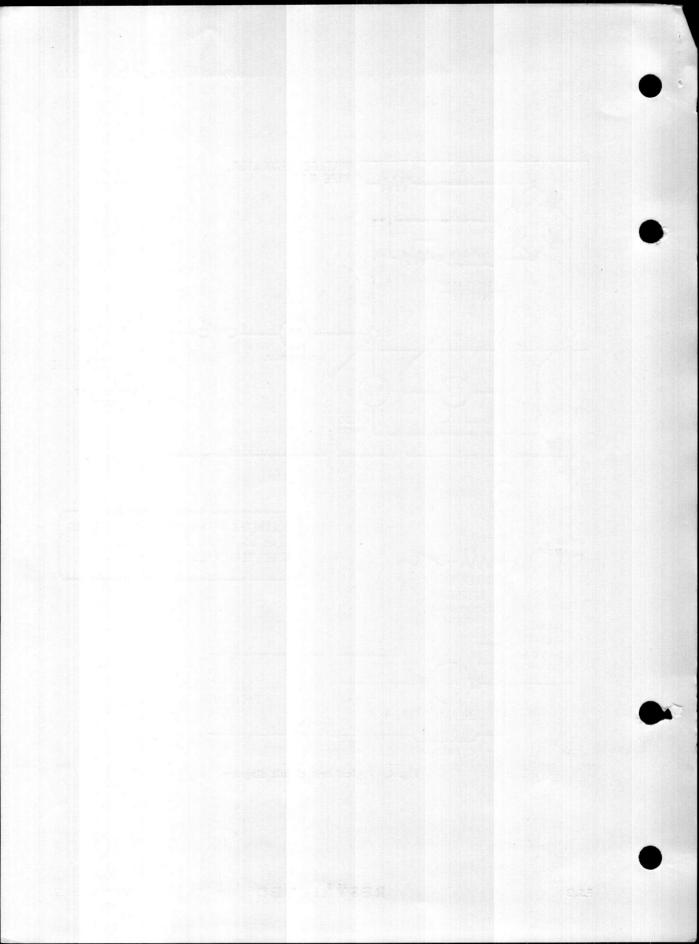



Fig. 4. Typical test circuit diagram

