Chapter 10

SOLENOID VALVE, TYPE FAW

LIST OF CONTENTS

						ara.							erre.
Introduction						1	Installation			**	4	-	7
Description	14	*				2	Servicing	-	-	*			8
Operation		-	123			5							

LIST OF ILLUSTRATIONS

				Fie
Typical solenoid valve		*	**	1
Castioned piers of palus				

LIST OF APPENDICES

,	lpp.					A	ρp.
Standard serviceability tests	A	Type FAW/A: 350		-	 		2
Solenoid valve, Types FAW/A/220, 221,		Type FAW A 501	-	-	-		3
228, 325, 330, 505, 508, 510, 520	1	Type FAW/A/507		-			4

Introduction

 The valve is designed as a solenoid operated on and off valve which is installed in an aircraft system to control the flow of fluid. A typical valve is described in the chapter with the variants described in the spoendices.

DESCRIPTION

General

2. The valve consists of a cylindrical body which houses a solenoid, a body tube assembly and an armature. The solenoid coil is wound on a centre tube, two leads being brought from the coil windings to a terminal block on the valve body to provide electrical connection to the solenoid.

Fig. 1. Typical solenoid valve

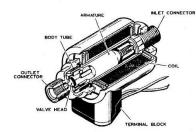


Fig. 2. Sectioned view of valve

- The body tube is fitted into the centre tube and carries an inlet and outlet connector. The outlet connector has an integral valve seat and is tapped to take a metering jet.
- 4. The armsture, which has a neoprese valve head restance by a ferrule, is housed in the body tube with a spring located between the amsture and the inlet connector to load the valve head on the valve seat when the valve is closed. Redial holes in the armsture communicate with the hollow core which is aligned with the bore of the inlet connector.

OPERATION

5. When the solenoid is energised the amature is drawn into the body tube, against the opposing spring pressure, to lift the valve head from the valve seat and permit fluid to flow from the inlet connector, through the armature core and drillings, to the outlet connector. When the solenoid is de-energised the armsture moves out of the body tube, under spring pressure, to load the valve head on the seat and stop the flow of fluid through the valve.

INSTALLATION

7. Reference should be made to the appropriate Aircraft Air Publication prior to installing the valve in the system. The direction of flow through the valve is indicated by an arrow and the word 'FLOW' engraved on the valve body.

SERVICING

Routine servicing consists of examination for damage, security of attachment leakage, insulation and bonding tests. If the serviceability of a valve is in doubt apply the tests given in Appendix 'A'. Valves which are found to be outside the specification given should be returned to Stores.

Appendix 'A'

STANDARD SERVICEABILITY TESTS

FOR

SOLENOID VALVE, TYPE FAW

Introduction

- 1. The tests described in this appendix should be applied at the following times:-
 - Before installing a valve in the system.
 - (2) Whenever the serviceability of a valve is in doubt.
 - (3) At the appropriate servicing periods.

TEST EQUIPMENT

The following test equipment is required:-

- Bridge megger resistance tester, Type 'B' Ref. No. 5G/1708.
- (2) Bonding tester, Type 'B' Ref. No. 5G/2126.
- (3) A dry air supply controllable up to 75 lbs/in².

TEST PROCEDURE

 All tests are to be carried out at normal room temperature (approximately 20°C).

Table 1

Test pressure, voltage, insulation and coil resistance values

Valve Type FAW/A/	Test Pressure lbs/in²	Test V		Insulation Resistance megohms	Coil Resistance
220	30	14-5	8	30	8-13 to 9-17
221	30	29	16	30	27-5 to 32-5
228	30	29	15	20	37 to 43
325	60	29	15	20	37 to 43
330	30	29	16	30	27-5 to 32-5
350	75	29	16	30	27-5 to 32-5
505	30	29	16	30	27-5 to 32-5
508	30	29	16	30	27-5 to 32-5
510	60	28-5	18	30	27-5 to 32-5
520	30	29	16	30	37 to 43

TESTING

closes when the solenoid is de-energised.

Functional test

4. Connect the air supply to the inlet connector and apply the pressure stipulated in column 2, Table 1. Check to ensure that the valve opens when the solenoid is energised at the minimum voltage given in column 3, Table 1, and

Leakage test

Apply the test pressure given in column 2, Table 1, to the inlet connector and check to ensure that there is no leakage through the valve seat when the valve is closed.

SOLENOID VALVES

TYPE FAW/A/220, 221, 228, 325, 330, 505, 508, 510, 520

LEADING PARTICULARS

	Nominal			Dimension	ns (ins.)	
Valve Type	Voltage	Reting	Ref. No.	Length	Width	Heigh
FAW/A/220	12	5 minutes	27V/2678	2-2	1-6	3-7
FAW/A/221	24	5 minutes	27V/3779	2.2	1.6	3.7
FAW/A/228	24	Continuous	27V/3462	2-2	1.6	3.7
FAW/A/325	24	Continuous	27V/4814	2.2	1.6	3.7
FAW/A/330	24	5 minutes	27V/4011	2-6	1.6	3.7
FAW/A/505	24	5 minutes	27V/5584	2.8	1.6	3.7
FAW/A/508	24	5 minutes	27V/5418	3.9	1.6	3.7
FAW/A/510	24	5 minutes	27V/5910	2.6	1.6	3.7
FAW/A/520	24	Continuous	27V/5764	3-9	1.6	3.7

Introduction

Types FAW/A/220, 221, 228, 325, 508, 520 1. These valves are similar to that described in the chapter.

Types FAW/A/330, 510, 505 2. These valves are similar to that

described in the chapter but the electrical connection to the coil windings is made through a two pole connector plus.

TESTING

Functional and leakage tests

 Valves should be tested for leakage and for operation as described in Chap. 10, App.A, Para 2 to 5.

Insulation resistance

4. Connect a 500 V insulation resistance tester (Ref. No. 5G/1708) between the

valve body and a connection to the valve solenoid. The insulation resistance should not be below the appropriate value appearing in Chap. 10, App. A, Table 1, Column 4; lower values of resistance may be accepted at the discretion of the Technical Officer.

Coil resistance 5. Connect the insulation resistance

tester between the valve coil connection, test to ensure that the coil resistance conforms to the value given in Chap. 10, App. A, Table 1, Column 5.

Bonding resistance

 Connect the bonding tester (Ref. No. 5G/2126) between the inlet and outlet connection and test to ensure that the bonding resistance does not exceed 0.025 ohm.

SOLENOLD VALVE TYPE FAW/A/350

I FADING PARTICULARS

Ref. No.						 				-	**	27V/5529
Nominal v	olt	age		**					**			24V d.c.
Rating												5 minutes
Overall dis	me	naio	ns:-									
Longth		-							140			2-6 ina.
Width			-					**		-		1.6 ins.
Height										-		3-7 ins.

LIST OF CONTENTS

Introduction		-			**			1	Installation			**	**	7
Description	**				-		.,	2	Testing	 -	-	-		8
Operation			-	**		**		5						

LIST OF ILLUSTRATIONS

			Fi
Sectioned view of unive			- 6

Introduction

 This valve is designed as a solenoid operated on and off valve which, when installed in an aircraft fuel system, will normally be open but will be held closed when the solenoid is energised.

DESCRIPTION

General

2. The valve consists of a cylindrical body which houses a solenoid, a body tube assembly and an armature. The solenoid coil is wound on a centre tube, two leads being brought out from the coil windings to the poles of a connector plug on the valve body to provide electrical connection to the solenoid.

- 3. The body tube is fitted into the centre tube and carries an inlet and outlet connector. The inlet connector has a conical valve seat machined at the inner end and the outlet connector is internally threaded to take a metring jet.
- 4. The armature which has a contcal end fitted with a seal, is housed in the body tube with the seal adjacent to the valve seat. Two grooves are machined on the armature to communicate the inlet to the outlet connector when the valve is ones.

OPERATION

5. When the solenoid is energised the

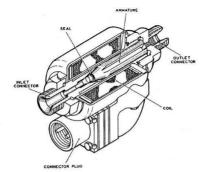


Fig. 1. Sectioned view of valve

armature is drawn into the body tube to load the seal on the valve seat to close the valve and stop the flow of fuel from the inlet to the outlet connector.

6. When the solenoid is de-energised the arnature moves towards the outlet connector under the pressure of first acting on the end of the arnature, to open the valve and permit first to flow from the inlet connector, along the grooves on the armsture, to the outlet connector.

INSTALLATION

7. Reference should be made to the appropriate Aircraft Air Publication prior to installing the valve in the system. The valve must be installed with the axis through the inlet and outlet connectors vertical and the inlet connector uppermost. The direction of flow through the valve is indicated by an arrow and the word 'FLOW' engraved on the valve body.

TESTING

Functional and leakage tests

8. Valves should be tested for leakage and for operation as described in Chap. 10, App. A, Para. 2, to 5. It should be noted when carrying out this test that the valve closes when the solenoid is energised.

Insulation resistance

9. Connect a 500 V Insulation resistance tester (Ref. No. 5G/1708) between the walve body and a connection to the valve scleenoid. The insulation resistance should not be below the appropriate value appearing in Chap. 10, App. A, Table 1, Column 4; lower values of resistance may be accepted at the discretion of the Technical Officer.

Coll resistance

10. Connect the Insulation resistance tester between the valve coil connection, test to ensure that the coil resistance conforms to the value given in Chap. 10, App. A, Table 1, Column 5.

Bonding resistance

11. Connect the bonding tester (Ref. No. 5G/2126) between the inlet and outlet connector and test to ensure that the bonding resistance does not exceed 0-025 ohm.

SOLENOID VALVE, TYPE FAW/A/501

LEADING PARTICULARS

Ref. No.	_	-	-	-		-	_	-			-		-	-	27V/5399
Nominal v	olt	age	-	-	_	_	_	-	-	-	_	-	_	-	24V d.c.
Rating -	-	-		_	_	-	_	_	-	-	_	-	_	- 1	Continuous
Overall di															
Length	-	-			-		2	-		-	-	-		2	2-2 ins.
Width		_	-	-	_	_	-	-	-	_	-	-			1-6 ins.
11-1-46-															2.7 :

LIST OF CONTENTS

							Ē	ara.								P	ara.
Introduction	-	-	-		-	-	-	1	Installation	-		-	-			-	7
Description			-	-	-	-	-	2	Servicing	-	-				-	-	8
Operation	**	-	-	-		-	-	5	Testing		**			-	-	~	9

LIST OF ILLUSTRATIONS

7374.03,57777				Fi
Sectioned view of valve	-	-	-	

Introduction

 The valve is designed as a solenoid operated fuel valve which, when installed in an sireraft system, will normally be open but during re-fuelling will be held closed against a fuel pressure of 50 lbs/ns/ with momentary surges of up to 100 lbs/ns², when the solenoid is energissed.

DESCRIPTION

General

The valve consists of a cylindrical body which houses a solenoid, a body tube assembly and an armature. The solenoid coil is wound on a centre tube, two leads being brought out from the coil windings to a terminal block on the valve body to provide electrical connection to the solenoid.

 The body tube is fitted into the centre tube and carries an inlet and outlet connector. The inlet connector has a conical face machined at the inner end and a spring loaded valve seat fitted into the bore.

4. The armsture which is machined with a conical valve head, is housed in the body tube with the valve head aligned with the valve seat, and a return spring fitted to the armsture to hold it sway from the valve seat when the solenoid is not energised. Redial holes in the armsture head communicate with the hollow core

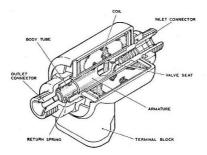


Fig. 1. Sectioned view of valve

which is aligned with the bore of the outlet connector.

OPERATION

- 5. When the solenoid is energised the armature is drawn into the body tube, against the opposing spring pressure, to load the head of the armature to the valve seat and stop the flow of fael through the valve.
- 6. When the solenoid is de-energised the armature is drawn away from the valve seat, under the action of the return spring, to permit fuel to flow through the drillings and hollow core of the armature to the outlet connector.

INSTALLATION

Reference should be made to the appropriate Aircraft Air Publication prior to installing the valve in the system. The direction of flow through the valve is indicated by an arrow and the word 'FLOW' engraved on the valve body.

SERVICING

8. Routine servicing consists of examination for damage, security of attachment, leakage, insulation and bonding tests. If the serviceability of a valve is in doubt apply the tests given in para. 10 to 16. Valves which are found to be outside the specification given should be returned to Stores.

TESTING

Test equipment

 The test equipment required is as laid down in Appendix 'A' to the chapter, plus the following additional items:

 Rotameter Flow Tester, Ref. No. 6C/1166.

(2) A dry air supply controllable up to 110 lb/in2.

Functional test

10. With no air pressure applied to the inlet connector check to ensure that the valve closes when the solenoid is energised et 13 V de

11. Energise the solenoid at 28 V d.c. and check to ensure that the valve opens when the solenoid is de-energised.

12. Connect the air supply to the inlet connector, apply an air pressure of 110 lbs/in2 and check to ensure that the valve closes when the solenoid is energised at 28 V d.c. Slowly reduce the applied voltage and check to ensure that the valve does not open until the voltage is below 11 V d.c.

Lenkade test

13. Connect the flow meter, Ref. No. 6C/1166 to the outlet connector. Apply an air pressure of 110 lbs/in2, energise the solenoid at 28 V d.c. to close the valve and check to ensure that the leakage through the valve seat does not exceed 2,360 c.c.s/minute.

Electrical tests

Insulation resistance

14. Connect the insulation tester, Ref. No. 5G/1708 between the valve body and a terminal on the terminal block and test to ensure that the insulation resistance is not less than 20 megohms at 500 V d.c.

Coil resistance

15. Connect the leads of the resistance tester. Ref. No. 5G/1708 between the terminals on the terminal block and test to ensure that the resistance of the coil windings is between 37 and 43 ohms.

Bondiné resistance

16. Connect the bonding tester, Ref. No. 5G/2126 between the inlet and outlet connector and test to ensure that the bonding resistance does not exceed 0-025 ohm.

SOLENOID VALVE, TYPE FAW/A/507

I FADING PARTICULARS

Ref. No.	-	**	**	-	-	-	44	**	**	-	-	**	-	-	27V/5725
Nominal v	olt	age			-			**						**	24V d.c.
Rating -			No.					**	-	**	*			C	ontinuous
Overall di	zne:	nsio	ns:-												
Length		**						100	100			946	198		2-2 ins.
Width										**			-		1-6 ins.
HIOU															27:

LIST OF CONTENTS

								*** ***							-	
Introduction	-				4		-	1	Installation				**	-	**	
Description	-	-		2	-		**	2	Servicing			**	**		**	
Operation		-	**	-		**	-	5	Testing -	**	**		*		-	

LIST OF ILLUSTRATIONS

			Fig.
Sectioned view of valve	**		1

Introduction

 The valve is a solenoid operated on and off valve which has been designed for installation in a methanol injection fuel de-icing system on an aircraft. The valve will normally be open but will close when the solenoid is energised.

DESCRIPTION

Genera

 The valve consists of a cylindrical body which houses a solenoid, a body tube assembly and an armature. The solenoid coil is wound on a centre tube, two leads being brought out from the coil windings to a teminal block on the valve body to provide electrical connection to

- The body tube is fitted into the centre tube and carries an inlet and outlet connector. The inlet connector has a conical valve seat machined at the inner end and the outlet connector is internally threaded to take a metering jet.
- 4. The armsture has a conical head at one end, fitted with a seal, a spring loaded ball relief valve fitted into the hollow core at the outlet end and four axial grooves machined down the side. The relief valve is set to open when the inter pressure is between 55 and 65 lbs/in.*

Fig. 1. Sectioned view of valve

The armature is fitted into the body tube with the seal adjacent to the valve seat and a return spring located between the head of the armature and a seating in the bore of the inlet connector.

OPERATION

5. When the solenoid is energised the namature is drawn into the body table to load the seal on the valve seat to stop the flow of fluid from the inlet to the outlet connector. Should the inlet pressure exceed 55 lavia* it will sat, through the hollow core of the armature, on the top of the spring located ball to compress the spring located ball to compress the the ball to the outlet connector. When the inlet pressure dropp below 55 lbs/in* the relief valve closes as the spring loads the ball on to its seating.

6. When the solenoid is de-energised

the armature moves towards the outlet connector under the action of the return spring to open the valve and permit fluid to flow from the inlet connector, down the grooves in the side of the armature, to the outlet connector,

INSTALLATION

7. Reference should be made to the appropriate Aircraft Air Publication prior to installing the valve in the system. The direction of flow through the valve is indicated by an arrow and the word 'FLOW' engraved on the valve both.

SERVICING

 Routine servicing consists of examination for damage, security of attachment, leakage, insulation and bonding tests.
 If the serviceability of a valve in in doubt . . .

apply the tests given in para. 10 to 15. Valves which are found to be outside the specification given should be returned to Stores

TESTING

Test equipment

9. The test equipment required is as laid down in Appendix 'A' to the chapter, plus the following additional item:-

(1) Rotameter Flow Tester, Ref. No. 6C/1166.

Functional test

10. Connect the air supply to the inlet connector and apply an air pressure of 40 lhs/in2 Check to ensure that the valve closes when the solenoid is energised at 28 V d.c. and opens when the solenoid is de-energised.

11. Energise the solenoid to close the valve, apply 65 lbs/in2 air pressure to the inlet connector and check to ensure that the relief valve opens.

Leakage test

12. Connect the flow meter, Ref. No. 6C/1166 to the outlet connector. Apply 45 lbs/in2 air pressure to the inlet connector, energise the solenoid at 28 V d.c. to close the valve and check to ensure that the combined leakage through the main valve seat and relief valve seat does not exceed 944 c.c.s./minute.

Electrical tests

Insulation resistance

13. Connect the insulation tester, Ref. No. 5G/1708, between the valve body and a terminal on the terminal block and test to ensure that the insulation resistance is not less than 20 megohms at 500 V d.c.

Coil resistance

14. Connect the leads of the resistance tester. Ref. No. 5G/1708 between the terminals on the terminal block and test to ensure that the resistance of the coll winding is between 37 and 43 ohms.

Bonding resistance

15. Connect the bonding tester, Ref. No. 5G/2126, between the inlet and outlet connector and test to ensure that the bonding resistance does not exceed 0.025 ohms.