

GROUP B1

GENERATORS AND BATTERIES (CODE GA)

LIST OF CONTENTS

	Para.		Para.
Introduction 1	DESCRIPTION	
Generators and batteries	... 2	General 12
Operation 5	Paralleling of generators 13
		REMOVAL AND ASSEMBLY 14

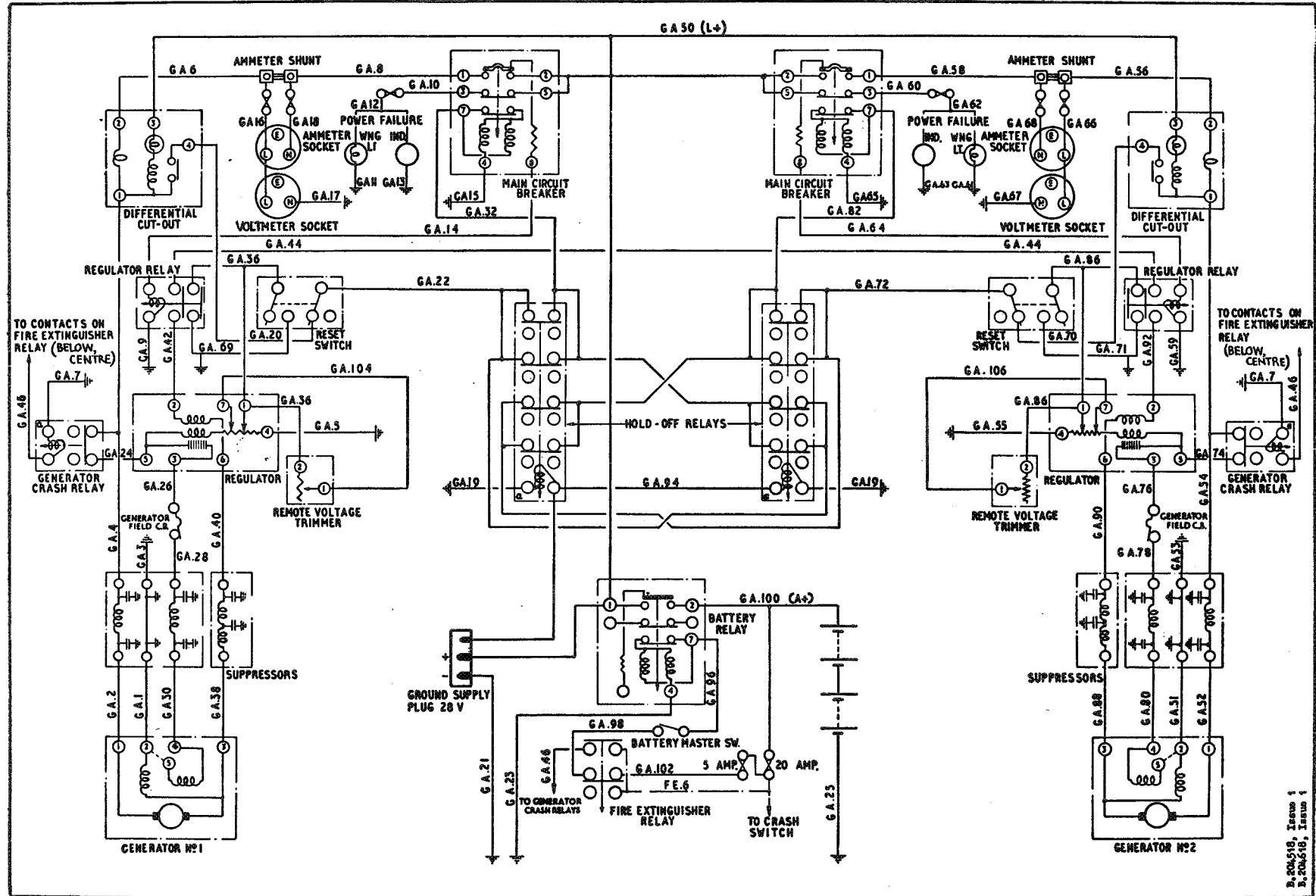
LIST OF ILLUSTRATIONS

	Fig.
Generators and batteries (theoretical) 1
Generators and batteries (routing) 2

Introduction

1. This group contains a brief description, including the method of operation, of the d.c. power supply installed in this aircraft, together with the necessary servicing required to maintain the equipment in an efficient condition. A routing chart and theoretical diagram of the circuit are also included. For a general description of the electrical system as a whole, including system wiring details, referencing of components and general servicing, together with the location and removal of the major equipment, reference should be made to Groups A1, A2 and A3 of this chapter. Detailed information on the standard components used will be found in the appropriate volumes of A.P.4343 series.

DESCRIPTION**Generators and batteries**


2. Two Type 515A, 24-volt, 6-kilowatt d.c. generators, mounted on and driven by the engine accessories gear box, supply the power for all the electrical services of this aircraft. The generators are connected in parallel and charge two Type C, 12-volt, 25-amp. hour

batteries which are connected in series and mounted on a platform in the radio bay. To minimize radio interference, the main and field supplies from each generator are taken through a Type X3 suppressor, while the load balancing supply from each generator is taken through a Type B4 suppressor. These four suppressors are located two on each side of the centre fuselage just aft of the generators. To enable earth return equipment to be employed, the generator negative supplies, after passing through the suppressors, are earthed to the aircraft structure at earth points 10 and 16 located adjacent to the suppressors.

3. The generator controls are mounted on a panel, located in the radio bay, which is hinged to the top starboard longeron and anchored to the supply panel by four Dzus fasteners. Each generator is provided with its own set of control equipment. This comprises a Type 94 voltage regulator with external trimmer, a Type A, Mk. 1 differential cut-out, a Type D, 200-amp., and a Type A2, 10-amp., circuit breaker for the generator main and field windings respectively. There

is, in addition, a re-set switch, control relays, a Dowty Mk. 1 or Type A2 power failure magnetic indicator and testing equipment. Two eight-way fuse blocks, containing the control fuses, are also mounted on this control panel, together with a ten-way terminal block which is used to link all the earth leads of the control equipment.

4. A battery master switch is located on the leg panel in the cockpit. When placed in the OFF position, the switch isolates the aircraft batteries from all the electrical services, with the exception of the essential load line and fire extinguisher circuit. The generator power failure warning lamps, which illuminate whenever a failure of the supply circuit occurs, are also located on the leg panel. An external supply socket is provided on the battery support structure to enable an external supply to be connected to the aircraft services. It is most important that an external supply is used whenever an electrical supply is required for servicing, thus preventing the aircraft batteries being discharged.

Fig. 1. Generators and batteries (theoretical)

RESTRICTED

Operation

5. When two generators are operating in parallel it is essential that they are regulated and aligned so that their outputs are as near equal as possible, under all operating conditions, to ensure equal load sharing and stable operation. Each generator is, therefore, provided with its own control equipment, and although it operates as an independent unit, having its own characteristic, when correctly regulated and aligned it will tend to operate in conjunction with the other generator to a common factor. To bring a generator into operation on a line to which another generator is already connected, it is necessary to momentarily boost the regulator controlled voltage of the additional generator so as to overcome the higher electromotive force of the first generator, which tends to oppose the current flow from the additional generator. This boost is obtained by increasing the resistance in series with the operating coil of the voltage regulator and consequently reducing the resistance in series with the generator field windings. This operation is effected by a 3-ohm trimmer resistance in the voltage regulator, which prior to operation of the generator is in circuit. During normal operation of the generator, contacts 5 and 6 of the regulator relay, which are closed when the relay is energized, automatically short-circuit the trimmer, while, during alignment of the generators, the trimmer may be short-circuited by use of the re-set switch (para. 13). Additionally, contacts 3 and 4 of the relay serve to complete the load balancing line when the relay is closed (para. 6). As each generator control circuit is duplicated, it is only necessary to follow the operation of one generator and its control equipment to fully understand the circuit.

6. When a generator commences to rotate, an increasing voltage is developed across the output terminals, due to the residual magnetism in the field. This output is fed through suppressors to the differential coil of the cut-out, the operating coil of the voltage regulator, via the normally closed contacts (2 and 2) of the generator crash relay (para. 9) and to the generator field windings, via the carbon-

pile resistance in the voltage regulator. The generator field windings receive extra energization by this current which permits the output voltage to rise rapidly, and this voltage builds up in opposition to the battery current passing through the differential coil windings and ballast lamp in the cut-out. The differential coil windings are such that, when the generator output rises to a figure of 0.35 to 0.75 volts above that of the batteries, the current in the coil polarizes the armature sufficiently to cause it to move over and so close the contacts. This action energizes the closing coil of the Type D circuit breaker, via the re-set switch and hold-off relays, thus closing the main contacts so that the differential coil and ballast lamp are shorted out. The current now flows from the generator, through the series coil, which holds the armature in the contacts-closed position, and in this position the polarizing magnets also bias the armature in this direction. At the same time, the auxiliary contacts of the circuit breaker are opened, thus inserting the holding coil into the circuit and breaking the circuit to the power failure warning lamp and magnetic indicator. As the circuit breaker main contacts close, a supply is fed to energize the regulator relay, thus removing the regulator voltage boost (para. 5) and completing the circuit of the load balancing coil in the voltage regulator, the coil being supplied from the generator interpole windings.

7. The action of the operating coil in the voltage regulator is to adjust the resistance of the carbon-pile in series with the generator field windings relative to the current drain, and thus increase the output as the load increases and vice-versa. The function of the load balancing coil is such that it acts on the carbon-pile to reduce the voltage of the generator when it is overloaded in relation to the other generator and to increase the voltage when it is underloaded, thus the output is varied according to the load imposed and the load is shared more or less equally between the two generators.

8. Power failure is indicated by one warning lamp and one magnetic indicator for each

generator. When the generator voltage falls below that of the batteries, a reverse current flows in the series coil of the cut-out and this reverses the polarity of the armature and opens the contacts. This action de-energizes the holding coil of the circuit breaker and breaks the main contacts, thus disconnecting the generator from the batteries. The contacts feeding the power failure warning lamp and magnetic indicator are made when the main contacts break and the lamp and indicator operate to indicate failure. At the same time the regulator relay is de-energized to break the load balancing line and connect into circuit the 3-ohm trimmer in the voltage regulator, thus providing voltage boost, which, if the fault was of a temporary nature, will enable the generator to re-commence operation in the normal manner. When the generator is shutdown, i.e., engine stopped and the batteries isolated, the armature of the cut-out is biased in the open position by the polarizing magnets.

9. The batteries are connected to the positive bus-bars via the battery relay Type R, which is energized from the battery essential load line and controlled by the fire extinguisher relay and battery master switch. Placing the master switch in the ON position, with the fire extinguisher relay de-energized, i.e., in its normal condition, energizes the closing coil of the battery relay and causes the main contacts to close and the auxiliary contacts to open. The batteries are thus connected to the bus-bars through the main contacts while the hold-on coil of the battery relay is energized by the breaking of the auxiliary contacts. In the event of a crash landing, the inertia switch in the fire extinguisher circuit (Group C2 of this chapter) will operate and energize the fire extinguisher relay which, apart from operating the fire extinguisher, will also break the supply to the battery master switch and battery relay, thus opening the main contacts of the battery relay and isolating the batteries from all but the essential load line and fire extinguisher circuit. At the same time, the fire extinguisher relay makes the supply to the generator crash relays, which become energized and break the

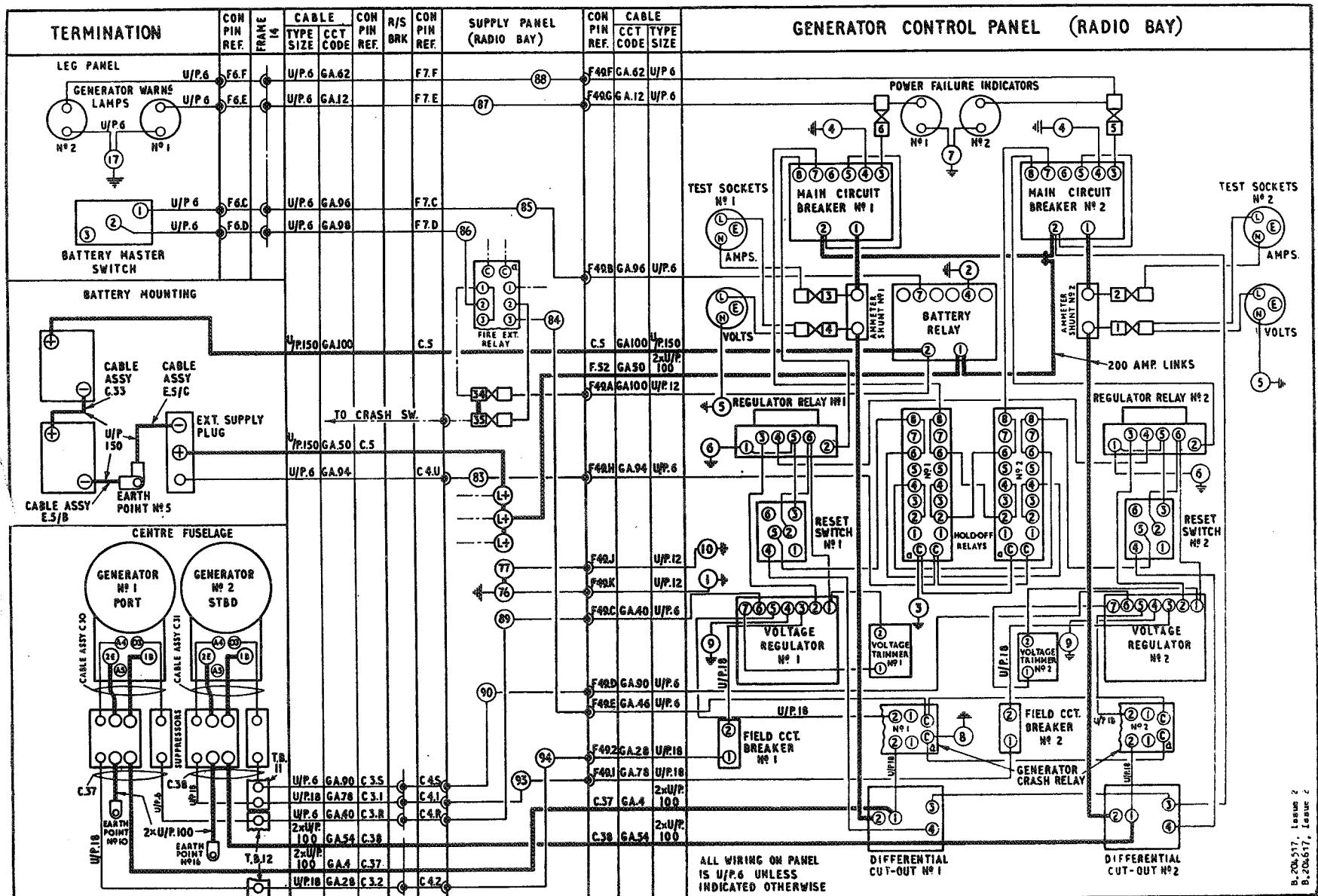


Fig. 2 Generators and batteries (routing)

RESTRICTED

supply to the voltage regulator operating coils, thus off-loading the generators.

10. When an external supply is connected to the external plug for testing the aircraft electrical equipment, the coils of the hold-off relays are fed from the external supply, via a "loose" positive link, before the main positive connection is made. The hold-off relays are thus energized and break the feeds to the generator circuit breakers, the main contacts of which open to isolate the generators, so preventing the external supply from attempting to "motor" the generators. It is also advisable to place the battery master switch to OFF when the external supply is connected, to prevent the batteries being discharged should the external supply voltage fall below that of the batteries.

11. Voltmeter and ammeter test-sockets, together with an ammeter shunt, are provided for each generator for use when adjusting the circuit as described in para. 13 of the group.

SERVICING

General

12. For general servicing of the circuit as a whole, reference should be made to Group A1 of this chapter. Absolute cleanliness of all parts, particularly the generator brush gear and commutator, together with the immediate remedy of any defects, however small, is essential for the reliable operation of the circuit. The contacts of the cut-outs, circuit breakers and relays must be kept clean and the terminals of all components must be kept tight and free from corrosion. For functional tests and detailed servicing of the standard components used, reference should be made to the appropriate sections of A.P.4343, A.P.4343A and A.P.4343B, Vol. 1.

Paralleling of generators

13. The generating circuit should always be paralleled after the fitment of a new generator, a new voltage regulator, a new cut-out or after any servicing which may have disturbed the alignment of the circuit and also when a check indicates that adjustment is necessary. The procedure, after the units

have been adjusted on the bench as described in the relevant Air Publications, and using an external supply, is as follows:—

Note . . .

If the aircraft has been parked under damp conditions, it is essential to dry out any moisture that may have been absorbed by the carbon-piles in the voltage regulators, before attempting to parallel the generators. To do this, it is recommended that the generator control panel be removed from the aircraft, as described in Group A2 of this chapter, and connected to a suitable ground rig, the generator of which should be run for twenty minutes at a speed of between 3,000 and 4,000 r.p.m.

- (1) Start the engine in accordance with the instructions contained in A.P.4347D—G.H.N. (Ground Handling Notes) and in A.P.4282, Vol. 1.
- (2) Connect the test leads of a 0-30 volt voltmeter to No. 1 generator voltmeter test-socket.
- (3) With the engine running at the normal cruising speed 6,000 r.p.m. and No. 1 generator re-set switch set to RE-SET (generator off-load) adjust the external voltage regulator trimmer resistance until 28 ± 0.25 volts is indicated on the voltmeter.
- (4) Increase and decrease the engine speed at least three times and then check the voltage again at the original speed to ensure that it is still at 28 ± 0.25 volts.
- (5) With the engine running at approximately 6,000 r.p.m., check the load balancing coil by connecting a voltage of 0.25 volts across the terminals 2 and 6 of No. 1 generator voltage regulator, terminal 2 being connected to the positive side of the supply. The regulated voltage should be reduced by 2 to 2.5 volts.
- (6) With the engine still running at 6,000 r.p.m., check that the controlled voltage is increased by 1 ± 0.25 volts whenever the re-set switch is set to NORMAL.

(7) Slow down the engine to idling speed and remove the voltmeter from No. 1 generator voltmeter test-socket and connect it to No. 2 generator voltmeter test-socket.

(8) Adjust the voltage regulator for No. 2 generator by repeating operations (3), (4), (5) and (6).

(9) Remove the top cover of No. 1 generator cut-out.

(10) Slowly increase the engine speed until the cut-out contacts close. This should occur when the generator voltage is 0.35 to 0.75 volts above that of the positive bus-bars, as measured between terminal 1 of the cut-out and terminal 2 of the main circuit breaker.

Note . . .

An instrument such as the testmeter, Type D (Stores Ref. 10S/10610) should be used for this purpose.

(11) Should the differential voltage be slightly above the top limit of 0.75 volts, it is not recommended that any attempt be made to re-set the value within the above limits, as no harm will result.

(12) If, however, the figure obtained in operation (10) is well outside the range quoted, the adjusting screw in the relay adjacent to the ballast lamp should be re-set until the armature snaps over at the required value.

Note . . .

When the correct setting is obtained, operation (10) should be repeated a few times to ensure that the setting is stable.

(13) Slow down the engine to idling speed, set No. 2 generator re-set switch to NORMAL and No. 1 generator re-set switch to RE-SET.

(14) Remove the top cover of No. 2 generator cut-out and adjust this cut-out by repeating operations (10) to (12) inclusive.

(15) Disconnect the external s...
F.O. 56

16) Reduce the engine speed to $2,750 \pm 100$ r.p.m. and adjust the cut-out, by means of the adjustable contact screw, so that its contacts open at this speed.

Connect the test leads of an ammeter to the ammeter test socket of No. 1 generator. Check that, with the cut-out contacts open, a reverse current of 15 to 25 amp. is indicated on the ammeter.

WARNING

Before inserting the ammeter, it is important to ensure that the voltmeter is not in circuit, as damage may be caused to the ammeter if its shunt is isolated due to the non-fitting or failure of its fuse while both instruments are in circuit.

(18) Adjust No. 2 generator cut-out by repeating operations (16) and (17).

(19) The cut-outs are now adjusted and the adjusting screws should be sealed with shellac varnish and the top covers re-fitted.

Note . . .

The covers should not remain off longer than necessary.

(20) Both generators are now correctly regulated and are ready for paralleling.

(21) Slow down the engine to idling speed, place both re-set switches to the NORMAL position.

(22) Increase engine speed gradually to the full engine speed of 7,950 r.p.m. and note that the power failure magnetic indicators on the generator control panel and the warning lamps in the cabin are operating approximately together.

(23) Slow down the engine to idling speed and insert voltmeters into both voltmeter test sockets. Increase engine speed gradually to the full speed and check that the voltage indicated on both instruments is approximately equal at all speeds.

(24) Again slow down the engine to idling speed and remove the voltmeters. Insert ammeters into both ammeter test sockets and increase engine speed gradually to the full speed. Check that the current indicated on both instruments is approximately equal to all speeds.

(25) Check the voltage regulators for stability by switching on a typical flight load, e.g., flight instruments, radio and radar ranging. At an engine speed of 6,000 r.p.m. switch one of these loads, say flight instruments, on and off at least three times. Under these conditions the regulators should respond without any tendency to hunt.

(26) The generating circuit is now aligned and the engine may be stopped and the voltmeters and ammeters removed.

REMOVAL AND ASSEMBLY

14. The removal of the generator control panel, which carries the majority of the generator circuit equipment, is fully described in Group A2 of this chapter, while the removal of the batteries is covered in Sect. 2, Chap. 2 of this publication. Once clear access has been obtained, the removal of the generators and other components of the circuit should present no special difficulties.

This file was downloaded
from the RTFM Library.

Link: www.scottbouch.com/rtfm

Please see site for usage terms,
and more aircraft documents.

