

PART IV
EMERGENCY PROCEDURES

List of Chapters

- CHAPTER 1. Engine emergency procedures.
- CHAPTER 2. Airframe emergency procedures.
- CHAPTER 3. Abandoning and emergency landing procedures

RESTRICTED

PART IV

Chapter 1. ENGINE EMERGENCY PROCEDURES

List of Contents

	<i>Para.</i>
Engine seizure	1
Engine flame-out	2
Relighting	3
Action in the event of fire	4

1. Engine seizure

(a) Engine seizure will involve both hydraulic and electric supply failure. If an engine has failed due to obvious mechanical causes do not attempt to relight.

(b) Proceed as follows :

- (i) Turn off the H.P. and L.P. cocks and switch off booster pumps.
- (ii) Reduce speed and glide at 210 knots.
- (iii) Switch off all unnecessary electrics, including TAILPLANE interconnection.
- (iv) Set tailplane incidence at 0°. Release the aileron trim safety lock and check that the trim indicator is zero.
- (v) The controls may be left in Power, but Manual reversion must be expected.
- (vi) Jettison drop tanks and wing stores and carry out flame-out landing procedure or abandon.

2. Engine flame-out

(a) *Immediate actions*

- (i) If a flame-out occurs, a relight may be attempted *immediately*, while RPM are decreasing, by holding the relight switch ON for 2 seconds with the throttle at its set position. A successful relight will be indicated by the RPM stabilising and then starting to rise ; the likelihood of a successful relight is increased if the height and airspeed are below the recommended maxima for relighting.

RESTRICTED

(ii) If no relight occurs within 10 seconds, proceed as follows :

H.P. cock	OFF.
L.P. cock	Leave on.
All non-essential services . . .	Off.
If below 35,000 feet	Relight at once.
If above 35,000 feet	Switch off the booster-pumps, descend to 35,000 feet and carry out the relight drill.

(b) *Considerations*

If above 35,000 feet the decision either to descend quickly or to glide 210 knots will depend on the prevailing circumstances, e.g. weather conditions, distance to travel, etc. The following should be borne in mind.

- (i) The likelihood of obtaining a relight increases with decrease in altitude.
- (ii) At best gliding speed the aircraft will cover approximately 2 miles per 1,000 feet.
- (iii) With normal services running, the battery cannot be relied on for more than approximately 10 minutes. All non-essential services including booster-pumps should therefore be switched off to conserve the battery power.
- (iv) Manual should be selected before attempting to relight in case relighting is unsuccessful and the batteries are weakened to the extent that it will not be possible to select Manual. For this reason consideration should be given to jettisoning drop tanks and wing stores.
- (v) Descending rapidly at a speed above 210 knots will increase the windmilling r.p.m. Consequently hydraulic pressure will be higher and the generators may continue to supply power.
- (vi) If a glide is to be made at 210 knots the tailplane should be set to 0° .
- (vii) If it is necessary to descend more rapidly than at normal gliding speed 15° flap may be used to increase the rate of descent, but the speed must not exceed $0.9M$ and the tailplane incidence must be left at 0° . Intermediate degrees of flap can only be selected while electric and hydraulic power is available. The pull force needed to reduce speed to 210 knots will be considerable if in Manual.

3. Relighting

(a) (i) Check and/or set :

Maximum altitude	35,000 feet.
Maximum airspeed	0.80M
All non-essential electrics	Off.
H.P. cock	OFF.
L.P. cock	ON.
Battery master switch	ON.
Ignition switch	ON.
Starter master switch	ON.
Booster pumps	ON.

(ii) Set the relight switch on for 2 seconds, then set the throttle lever to the H.P. cock open position. When the RPM rises to idling, increase power carefully.

(iii) If no relight occurs within 30 seconds, set the throttle to the H.P. cock OFF position and switch off the booster-pumps. Allow, if possible, 30 seconds for the engine to dry out before the next attempt.

(b) *Failure to relight*

(i) If the engine fails to relight turn off the H.P. and L.P. cocks and switch off all non-essential electrical services (including the booster-pumps).

(ii) Set the tailplane incidence to 0° and reduce speed to 210 knots by climbing.

(iii) Release the aileron trim safety lock and check that the trim indicator is at zero.

(iv) Carry out flame-out landing procedure or abandon.

4. Action in the event of fire

(a) If the engine fire warning light comes on, close the throttle immediately.

(b) Should the light remain on after throttling back, a fire is indicated. Set :

H.P. cock	OFF.
L.P. cock	OFF.
Booster pumps	OFF.

and quickly reduce airspeed to a practicable minimum. Then press the extinguisher pushbutton. Should the light remain on and the fire persist abandon aircraft.

(c) If a satisfactory extinction has occurred the warning light should go out as the circuit is broken by the cooling of the flame switches. The engine must not be restarted, due to the risk of fire with the fire-fighting resources exhausted.

(d) Carry out flame-out landing procedure or abandon.

NOTE : If the light goes out within 5 seconds of throttling back, a hot gas leakage as distinct from a fire is indicated. It is safe to use the engine in this condition, but a landing should be made as soon as practicable. Reduced power should be used, but unless the power required is low the light will probably come on again. It is advisable, therefore, to throttle back every 5 minutes to check the light goes out in order to ensure that a fire has not started.

PART IV

Chapter 2. AIRFRAME EMERGENCY PROCEDURES

List of Contents

	<i>Para.</i>
Action in the event of hydraulic failure	1
Action in the event of complete electrical failure	2
Combined electrical and hydraulic failure	3
Inverter failures	4
Fuel system failures	5
Emergency operation of the tailplane	6
Aileron trim malfunction in Manual	7
Hood jettisoning	8
Drop tank jettisoning	9
Cockpit pressure and oxygen failures	10
Undercarriage and flaps emergency operation	11
Wheelbrakes emergency operation	12

1. Action in the event of hydraulic failure

(a) *Indication*

Complete failure will be indicated by a loss of pressure on the gauge followed by the red light coming on and by the audio warning sounding.

(b) *Immediate actions*

- (i) Reduce speed to below Manual limitations, or if mods. 686 and 687 are not embodied to 250 knots if below 40,000 ft. (0.80M above 40,000 ft.).
- (ii) Release the aileron trim safety lock and check that the trim indicator shows zero.
- (iii) If lateral control difficulties are experienced jettison drop tanks if they contain fuel and if fuel state permits.

(c) *Subsequent action*

- (i) Leave the controls in Power (in pre-mod. 686/7 aircraft, only if electrics are normal or mod. 502 is embodied), but when Manual reversion occurs, and in any case at a safe height before joining the circuit, switch off elevator and aileron Power. Normally the controls will revert to Manual quite quickly.
- (ii) Lower the undercarriage and flaps on the emergency systems.
- (iii) Limited use of brakes for landing.

2. Action in the event of complete electrical failure

(a) *Indications*

Impending failure is indicated by the generator warning lights both coming on. Subsequent complete failure is indicated by the unserviceability of the fuel gauges, booster-pumps, Mk. 4F compass, D.M.E., and all other electrically operated instruments.

(b) *Immediate actions*

- (i) Switch off all non-essential electrical services to conserve the battery for as long as possible.
- (ii) Set the tailplane angle to 0° and switch the TAIL-PLANE interconnection off.

(c) *Subsequent actions*

- (i) Provided that the engine is running correctly and hydraulic pressure is normal, leave the flying controls in Power. The magnetic indicators will show white when the batteries are discharged although the controls will remain in Power.

NOTE : If any doubt as to the serviceability of the hydraulic system exists select Power OFF before the batteries are discharged unless mod. 502 is embodied in pre-mod. 686/7 aircraft.

- (ii) Lower the undercarriage and flaps on the emergency systems.
- (iii) If battery power is still available in the circuit set the tailplane to $\frac{1}{2}^\circ$ nose-up.

3. Combined electric and hydraulic failure

(a) *Indications*

The most likely cause is failure of the auxiliary gear box. The hydraulic pressure gauge will show a fall in pressure and the warning light will come on followed by the audio warning. Both generator lights will come on.

(b) *Immediate actions*

- (i) Reduce speed to below the Manual limitations, or, if mods. 686/7 are not embodied, to 250 knots if below 40,000 ft. (0.80M above 40,000 ft.).
- (ii) If lateral control difficulties are encountered jettison drop tanks if they contain fuel.
- (iii) Set tailplane 0° . TAILPLANE interconnection OFF.
- (iv) Switch off all non-essential electrics including booster-pumps when below 20,000 feet.
- (v) Release the aileron trim safety lock and check that the trim indicator is at zero.
- (vi) Select power controls to Manual.

(c) Return to base without delay. If battery power is still available in the circuit set the tailplane to $\frac{1}{2}^{\circ}$ nose-up. Lower undercarriage and flap on the emergency system.

4. Inverter failures

(a) Single inverter failure

(i) *Indication* : Inverter changeover magnetic indicator shows white.

(ii) *Action* : Set the INVERTER SELECT switch to STANDBY and then return it to NORMAL. If the indicator reverts to black, resetting has been accomplished ; if not, resetting is not possible.

(b) Double inverter failure

(i) *Indications* : Inverter changeover magnetic indicator shows white. The artificial horizon flag shows white and the Mk. 4F compass, oil pressure gauge and JPT gauge cease to function.

(ii) *Action* : No action is possible. The following services are lost : Artificial horizon, Mk. 4F compass, Top temperature control, Oil pressure gauge, JPT gauge, Explosion protection system and Radar ranging.

5. Fuel system failures

(a) Booster-pump failure

Indication : Amber warning light on and associated contents gauge reading high. Fuel low pressure warning light on if both pumps have failed.

Action : Reduce rpm to 7,200 and descend to :

15,000 ft. with 230 gallon tanks ;

20,000 ft., with 100 gallon tanks ;

25,000 ft. clean.

(These heights may be exceeded by 10,000 feet if maximum range is essential).

Switch both booster-pumps OFF, accept gravity feed, and do not exceed 7,200 r.p.m. Avoid negative G manoeuvres. If desirable switch on the serviceable pumps for landing, but fuel will only be used from tanks on that side.

(b) Transfer pressure failure

Indication : Indicator shows "crossline."

Action : Avoid steep dives ; balance fuel contents by switching off the booster pumps on the side of the failure,

until both sides are equal. Then switch the pumps ON. Rely only on front tank contents on the failed side and verify this against the low level lights.

(c) Transfer changeover failure

Indication : Changeover indicator remains at REAR with fuel contents below 1,300 lb.

Action : Switch from AUTO to WING. If the magnetic indicator remains at REAR, the changeover system has failed and only the front tank contents can be relied on. Verify this against the low level lights. Balance the fuel contents by use of the booster-pump switches.

6. Emergency operation of the tailplane

(a) If the normal tailplane motor fails or "runs away" lift the cover of the standby switch on the port shelf and use that control.

(b) Pre-mod. 907, if this fails to stop the runaway, trip the main actuator circuit breaker. Control can then be regained by operation of the standby trimmer, the rate of operation of which is about one-third that of the normal control.

(c) If complete electric failure occurs, control of the tailplane is impossible. It is important therefore to set the tailplane to 0° before the batteries are fully discharged.

7. Aileron trim malfunction in Manual

(a) When flying in Manual, if the aileron trim actuator malfunctions, resulting in full trim being applied with subsequent inability to rectify, reselect Power ON immediately and remain in Power for the remainder of the flight.

(b) If it is not possible to reselect Power a landing in Manual with full aileron trim applied will be hazardous and should only be attempted if conditions are favourable.

8. Hood jettisoning

(a) Jettison the hood by pulling the handle on the port shelf. It is recommended that a firm sharp pull is used.

(b) To ensure a clean jettison, the hood must be closed and the speed should be in excess of 140 knots. The aircraft may be flown at speeds up to 420 knots with the hood

jettisoned, but above this speed suction on the pilot's helmet may be disconcerting.

(c) The hood is also jettisoned when either the ejection seat primary or secondary handle is pulled.

9. Drop tank jettisoning

Drop tank jettisoning must be carried out in straight and level flight without yaw or sideslip in the following speed ranges :

230 gall. drop tanks	200-550 knots.
100 gall. drop tanks (finned)	200-450 knots.
100 gall. drop tanks (unfinned)	250-300 knots.

10. Cockpit pressure and oxygen failures

(a) Cockpit pressure failure

(i) Indication

Pressurisation failure will be indicated by the warning light and/or the cockpit pressure altimeter showing more than 30,000 feet.

(ii) Immediate action

Pull down the oxygen mask toggle. If the aircraft is above 30,000 feet descend as rapidly as possible to below 30,000 feet cabin altitude.

(b) Noxious fumes in the cockpit

Check 100% oxygen selected. Deflect EMERGENCY switch sideways. Descend to below 30,000 feet cabin altitude. Depressurise if height permits.

(c) Oxygen failure

(i) Indication

Magnetic indicator remains black and/or difficulty in breathing.

(ii) Action

Check connections and contents. Check pressure between 250 and 400 lb./sq. in. and if so deflect the EMERGENCY switch. If oxygen is received the indicator is unserviceable. If no oxygen is received, operate the emergency bottle and disconnect main supply. Descend to below 10,000 feet cockpit altitude.

11. Undercarriage and flaps emergency operation.

NOTE :

1. Both systems operate independently of their normal selectors .
2. When operating either the flap or the undercarriage emergency selector, it must be pulled out to the full extent of the operating wire.

(a) Undercarriage

- (i) If the undercarriage fails to lock down by normal selection when both electric and hydraulic systems are serviceable repeated raising and lowering and the application of sideslip or G may have the desired effect.
- (ii) If all attempts to lower the undercarriage (or any unit of the undercarriage) by the normal system fail, operate the emergency selector by holding in the knob and then pulling the handle.

(b) Undercarriage raising on the ground

To raise the undercarriage on the ground in an emergency, following normal selection, rotate and press the normal UP selector button. It must not be used in this way to retract the undercarriage in the air as there is a risk of the leg fairings being damaged. If the UP button cannot be pressed in normally after take-off, the wheels must be left down and the aircraft landed.

(c) Flaps

In an emergency the flaps may be lowered fully down only, by pulling out the emergency lowering control after first pushing in the central knob.

12. Wheel brakes emergency operation

(a) Should the hydraulic system fail, the wheel brake accumulators provide sufficient pressure for brake operation during landing, down to a gauge reading of 750 lb./sq. in. approximately. To conserve pressure when landing without main hydraulic pressure do not operate the lever during the downwind checks.

(b) Apply brake pressure in such a way that maxaretting does not occur (little pressure at high speed but increasing with decrease in speed) and avoid differential braking as much as possible. The brake lever should not be released after brakes have once been applied as this will result in a large loss of fluid.

(c) Put the H.P. cock/throttle OFF on touch-down, if the brakes accumulator pressure is low and the runway short.

(d) The aircraft must not be taxied after the landing run has been completed.

PART IV

Chapter 3. ABANDONING AND EMERGENCY
LANDING PROCEDURES

List of Contents

	<i>Para.</i>
Ejecting from the aircraft	1
Manual separation from the seat	2
Manual bale-out	3
Flame-out landing procedure	4
Landing with the undercarriage in abnormal positions	5
Landing with a burst tyre	6
Ditching	7

1. Ejecting from the aircraft

NOTE :

1. Emergency oxygen is not available once separated from the modified Mk. 2H or 3H seats.
2. The hood is jettisoned immediately either ejection seat firing handle is pulled, ejection following one second later.

(a) The minimum height and speed for safe ejection in straight and level flight are as follows :

With G-stop Ground level/90 knots.

Without G-stop 100 feet/120 knots.

If the aircraft is descending or in a nose-down attitude additional altitude will be required.

(b) Reduce speed to 250 knots (the recommended speed for controlled ejection) if possible and set the parachute container fully back.

(c) Withdraw the feet from the rudder pedals, at the same time grasping the primary firing handle. The elbows must be drawn in close to the body and both hands must grasp the handle firmly, the backs of the hands facing forward.

(d) (i) Draw the handle and face screen firmly over the face, keeping the head pressed hard against the headrest. It is not necessary to jerk the handle and in no circumstances should the blind be pulled outwards away from the face, as it may not then be possible to fire the cartridge.

(ii) If conditions of positive G prohibit the use of the primary firing handle, ejection should be initiated by pulling the secondary handle upwards. In this event no protection is given to the face. It is essential that the head is pressed firmly against the headrest to avoid dislocation of the neck on ejection.

(e) During ejection, the drogue gun will fire automatically.
(f) If ejection takes place above 10,000 feet automatic separation will not occur until that height is reached. If ejection takes place at or below 10,000 feet automatic separation will occur within $1\frac{1}{4}$ seconds if the G-stop has not operated.

(g) When the parachute is fully developed and the occupant is comfortably settled in the harness, detach the Type Q or R (not Type J) p.s.p. from the harness *side couplings* and allow it to lower. This reduces oscillation and lessens the risk of injury on landing.

(h) If the parachute fails to open after separation, pull the manual override D-ring to reveal the rip-cord D-ring and then pull the rip-cord D-ring.

2. Manual separation from the seat

If the automatic system fails after ejection :

(a) When forward speed is sufficiently low, discard the face screen.

(b) Pull the over-ride D-ring to isolate the parachute auto device.

(c) Disconnect the main oxygen tube from the seat and anti-G hose from suit.

(d) Disconnect seat restraining straps.

(e) Operate the harness quick-release.

(f) Lift the flap over the rip-cord D-ring and grasp the handle.

(g) Push clear of the seat and pull the rip-cord D-ring.

NOTE : If time is vital, items (c) and (d) may be ignored as they should occur as the occupant separates from the seat.

3. Manual bale-out

(a) If the seat fails to eject, pull the firing handle again. If it still fails to eject, a Manual bale-out must be made.

(b) Since on modified Mk. 2H or 3H seats emergency oxygen will not be available during the descent it is recommended that, if the aircraft is controllable, a descent is made to below 15,000 feet and the bale-out delayed until at 10,000 feet.

(c) *Manual bale-out sequence*

(i) Pull the manual override D-ring to its full extent.

(ii) Jettison the hood (if it has not already been jettisoned)

(iii) Disconnect the main oxygen tube from the seat and anti-G hose from the suit.

(iv) Invert the aircraft, operate the safety harness release and fall clear.

(v) Check any somersaulting, grasp and pull the rip-cord D-ring.

NOTE : If time is vital, item (c) (iii) may be ignored since it should occur when falling out of the seat.

4. Flame-out landing procedure

NOTE :

1. All the circumstances prevailing at the time of engine, hydraulic or electrical failure cannot be predicted. Each system and the effects of failure of each system must be thoroughly understood. The following information is intended to help the pilot reach the best decision.

2. For practice flame-out landings a flap setting of 23° and 5,300 RPM will give a rate of descent comparable with an engine-off glide.

(a) Choice of descent speed

(i) When a relight is not possible or practicable glide at 210 knots. (But see (ii)). If a deceleration is required to obtain the correct gliding speed, climb rather than use the airbrake. If used, the airbrake requires considerable hydraulic power and constitutes a hazard on landing should it remain out.

(ii) The recommended gliding speed for maximum range and/or in Powered control is 210 knots. In still air conditions a distance of approximately 86 nautical miles can be achieved from 40,000 ft. or about 2 n.m./1,000 ft. The average rate of descent is approximately 2,300 ft./min. These distances do not allow for the recommended overhead height of 7,000 ft. (See (d) below). If maximum range is not essential and a descent in Manual is being made, control is more comfortable at 175 knots.

(b) Use of Powered controls

(i) Engine failure may lead to either or both electrical and hydraulic failure. Experience shows that at 200 knots windmilling RPM will provide sufficient hydraulic pressure for limited use of the power controls, but large or frequent use of the controls or selection of any of the services may cause Manual reversion.

(ii) Power can only be selected off whilst electrical power is available. (Unless Mod. 502 is embodied in pre-mod. 686/7 aircraft). *To prevent inadvertent Manual reversion*

at an inconvenient stage of the approach, select Power off before electrical failure occurs. When gliding at 210 knots, windmilling RPM at high altitude will be sufficient to keep the generators charging, but RPM will decrease gradually as height is lost. Make frequent checks on the generator warning lights. After they come on, the batteries should not be relied on for more than 5 minutes.

(iii) If electrical failure occurs before Manual can be selected, to keep in Power maintain windmilling RPM as high as possible and keep control movements to a minimum. In pre-mod. 686/7 aircraft if mod. 452 or mod. 502 is not embodied the landing is likely to be extremely hazardous and it is recommended that the aircraft should be abandoned.

(c) *Immediate actions :*

H.P. and L.P. cocks	OFF.
Booster-pumps	OFF.
Tailplane incidence	0° TAILPLANE interconnection OFF.
All non-essential electrics	OFF.
Aileron trim	Safety lock off
Elevator and aileron power	Leave on temporarily, but select off before electric power fails (unless Mod. 502 is embodied) or a false anchorage occurs.

(d) *Circuit procedure and landing on an airfield*

- (i) If a flame-out landing on an airfield is being made, attempt to arrive overhead at approximately 7,000 feet A.G.L.
- (ii) Plan a Manual approach and aim to be downwind opposite the caravan at 210 knots at a minimum of 4,000 feet A.G.L. depending on prevailing wind conditions.
- (iii) Turn across wind at 200 knots and when it is certain that the touch-down point can be reached lower the undercarriage. When the undercarriage is lowered, the rate of descent is high and increases rapidly as speed is reduced below 180 knots. When flaps are lowered there is an additional marked increase in the rate of descent.
- (iv) Maintain 200 knots on the final approach and aim to cross the threshold at 150 knots. In Manual the pull force to roundout from a glide approach is large.

(e) Landing away from an airfield

Experience suggests that it is preferable to lower the undercarriage. In the down position it absorbs much if not all the initial impact, assists in retarding the aircraft, and, provided that electrical power is available and that the emergency lowering system has not been operated, it may be retracted after touch-down if necessary. With the undercarriage up, the aircraft must be lowered gently on to the ground *at normal speed* : if the speed is too low a wing drop is likely to occur, and if the speed is too high the aircraft is prone to bounce, the initial impact having a damaging effect on the cockpit.

5. Landing with the undercarriage in abnormal positions

NOTE : Experience has shown that these techniques cause minimum damage to the aircraft and none to the pilot. It is recommended that the wheels should be bumped on the runway in an attempt to lock down a lowered, but unlocked unit, before finally landing the aircraft.

(a) Both main wheels only locked down

- (i) Use up as much fuel as is safe, in order to move the C. of G. as far aft as possible. Unless circumstances dictate otherwise, land on a runway.
- (ii) Check harness tight and locked.
- (iii) Select hood open when crossing the threshold.
- (iv) Make a powered approach at the normal speed. On touch-down set H.P. cock OFF and maintain a moderate nose-up attitude.
- (v) Trim the tailplane to give full nose-up trim and as the speed falls below 100 knots maintain a high nose-up attitude without actually touching the tail cone on the ground.
- (vi) Lower the nose on to the runway at 80-90 knots and use the brakes gently to keep straight.

(b) Nosewheel and one main wheel locked down

- (i) Make a normal approach and landing.
- (ii) After touchdown hold the wings level for as long as possible by use of the ailerons.
- (iii) When aileron is applied and when the wing finally drops, the aircraft will swing in the direction of the unlocked wheel. Counteract this as much as possible by opposite brake.

(iv) Experience has shown that the distance from the landing path to the point of rest averages approximately 250 yards, varying from 100 yards (min.) to 400 (max.). Choose a runway which has an area about 400 yards wide available in the direction of the anticipated swing.

(c) *Belly landing*

Empty drop tanks should be retained. Make a normal approach and fly the aircraft on to the runway at the normal speed.

6. **Landing with a burst tyre**

No special difficulty is encountered when landing with a burst tyre(s), directional control and braking being adequate.

7. **Ditching**

(a) Model tests of a clean aircraft indicate that a ditching in any but ideal conditions would be very hazardous.

(b) Except in calm sea and air conditions combined with good visibility, abandon the aircraft rather than attempt to ditch.

(c) If ditching is inevitable :

(i) Jettison the hood.

(ii) Select 100% OXYGEN and deflect the emergency toggle sideways.

(iii) Check the p.s.p. lowering line for security of attachment to the life jacket.

(iv) Disconnect the emergency oxygen tube assembly.

(v) Disconnect the anti-G hose from the suit.

(vi) Lean back and ensure that the safety harness is locked in the rear position. Retighten straps as necessary

(vii) Free the leg restraint cords.

(viii) Ditch along the swell or, if the swell is not steep, into wind. *The airbrake must be retracted.*

(ix) When the aircraft has stopped, release the safety harness and free the leg restraint cords. Release the parachute harness, disconnect the main oxygen tube and leave the aircraft as quickly as possible.

(x) With the Type Q or R pack the side quick release couplings must be disconnected from the parachute harness and if time permits the pack should then be manhandled from the cockpit. If the aircraft sinks before this is achieved the p.s.p. lowering line must be disconnected. With the Type J pack the pilot leaves the seat with the p.s.p. attached to his clothing.

(xi) Inflate the life jacket when clear of the aircraft.

(xii) Inflate and board the dinghy.

This file was downloaded
from the RTFM Library.

Link: www.scottbouch.com/rtfm

Please see site for usage terms,
and more aircraft documents.

